Logotipo do repositório
 

Publicação:
Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems

dc.contributor.authordos Angelos, Eduardo Werley S.
dc.contributor.authorSaavedra, Osvaldo R.
dc.contributor.authorCarmona Cortes, Omar A.
dc.contributor.authorde Souza, Andre Nunes [UNESP]
dc.contributor.institutionUniversidade Federal do Maranhão (UFMA)
dc.contributor.institutionTech Fed Inst
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:27:17Z
dc.date.available2014-05-20T13:27:17Z
dc.date.issued2011-10-01
dc.description.abstractThis paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection.en
dc.description.affiliationUniversidade Federal do Maranhão (UFMA), Power Syst Grp, BR-65085580 Sao Luis, Maranhao, Brazil
dc.description.affiliationTech Fed Inst, BR-65030005 Sao Luis, Maranhao, Brazil
dc.description.affiliationState Univ São Paulo, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespState Univ São Paulo, BR-17033360 Bauru, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipEletrobras-Brazil
dc.description.sponsorshipIdEletrobras-Brazil: ECV 065/2005
dc.format.extent2436-2442
dc.identifierhttp://dx.doi.org/10.1109/TPWRD.2011.2161621
dc.identifier.citationIEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 4, p. 2436-2442, 2011.
dc.identifier.doi10.1109/TPWRD.2011.2161621
dc.identifier.issn0885-8977
dc.identifier.lattes8212775960494686
dc.identifier.urihttp://hdl.handle.net/11449/8928
dc.identifier.wosWOS:000298981800041
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofIEEE Transactions on Power Delivery
dc.relation.ispartofjcr3.350
dc.relation.ispartofsjr1,814
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectData miningen
dc.subjectelectricity theften
dc.subjectfuzzy clusteringen
dc.subjectnontechnical lossesen
dc.titleDetection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systemsen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIEEE-Inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.lattes8212775960494686[4]
unesp.author.orcid0000-0002-8617-5404[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: