Publicação: Monitoring of structural integrity using unsupervised data clustering techniques
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
This work presents a comparative study of three unsupervised data clustering techniques used to perform the monitoring of the structural integrity of an agricultural tractor. The techniques used in this study are: K-Means, Fuzzy C-Means and Kohonen artificial neural network. These techniques are intelligent learning tools, which provide a classification of the information based on the similarity clustering. The main application of these tools is to assist in structures inspection process in order to identify and characterize flaws as well as assist in making decisions, avoiding accidents. To evaluate these algorithms the modeling was performed and signs of simulation from a numerical model of an agricultural tractor. The results obtained by the methodologies presented a comparative study.
Descrição
Palavras-chave
Fuzzy C-means, K-means, Kohonen neural network, Monitoring of structural integrity
Idioma
Inglês
Como citar
International Journal of Pure and Applied Mathematics, v. 104, n. 1, p. 119-133, 2015.