Logotipo do repositório
 

Publicação:
Monitoring of structural integrity using unsupervised data clustering techniques

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

This work presents a comparative study of three unsupervised data clustering techniques used to perform the monitoring of the structural integrity of an agricultural tractor. The techniques used in this study are: K-Means, Fuzzy C-Means and Kohonen artificial neural network. These techniques are intelligent learning tools, which provide a classification of the information based on the similarity clustering. The main application of these tools is to assist in structures inspection process in order to identify and characterize flaws as well as assist in making decisions, avoiding accidents. To evaluate these algorithms the modeling was performed and signs of simulation from a numerical model of an agricultural tractor. The results obtained by the methodologies presented a comparative study.

Descrição

Palavras-chave

Fuzzy C-means, K-means, Kohonen neural network, Monitoring of structural integrity

Idioma

Inglês

Como citar

International Journal of Pure and Applied Mathematics, v. 104, n. 1, p. 119-133, 2015.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação