Logotipo do repositório
 

Publicação:
Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database

dc.contributor.authorvan Lingen, Henk J.
dc.contributor.authorNiu, Mutian
dc.contributor.authorKebreab, Ermias
dc.contributor.authorValadares Filho, Sebastião C.
dc.contributor.authorRooke, John A.
dc.contributor.authorDuthie, Carol-Anne
dc.contributor.authorSchwarm, Angela
dc.contributor.authorKreuzer, Michael
dc.contributor.authorHynd, Phil I.
dc.contributor.authorCaetano, Mariana
dc.contributor.authorEugène, Maguy
dc.contributor.authorMartin, Cécile
dc.contributor.authorMcGee, Mark
dc.contributor.authorO'Kiely, Padraig
dc.contributor.authorHünerberg, Martin
dc.contributor.authorMcAllister, Tim A.
dc.contributor.authorBerchielli, Telma T. [UNESP]
dc.contributor.authorMessana, Juliana D. [UNESP]
dc.contributor.authorPeiren, Nico
dc.contributor.authorChaves, Alex V.
dc.contributor.authorCharmley, Ed
dc.contributor.authorCole, N. Andy
dc.contributor.authorHales, Kristin E.
dc.contributor.authorLee, Sang-Suk
dc.contributor.authorBerndt, Alexandre
dc.contributor.authorReynolds, Christopher K.
dc.contributor.authorCrompton, Les A.
dc.contributor.authorBayat, Ali-Reza
dc.contributor.authorYáñez-Ruiz, David R.
dc.contributor.authorYu, Zhongtang
dc.contributor.authorBannink, André
dc.contributor.authorDijkstra, Jan
dc.contributor.authorCasper, David P.
dc.contributor.authorHristov, Alexander N.
dc.contributor.institutionUniversity of California
dc.contributor.institutionFarmer's Business Network Inc.
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)
dc.contributor.institutionSRUC
dc.contributor.institutionInstitute of Agricultural Sciences
dc.contributor.institutionThe University of Adelaide
dc.contributor.institutionUniversité Clermont Auvergne
dc.contributor.institutionDunsany
dc.contributor.institutionUniversity of Alberta
dc.contributor.institutionAgriculture and Agri-Food Canada
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionAnimal Sciences Unit
dc.contributor.institutionSchool of Life and Environmental Sciences
dc.contributor.institutionCSIRO Agriculture and Food
dc.contributor.institutionUSDA-ARS
dc.contributor.institutionSunchon National University
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionUniversity of Reading
dc.contributor.institutionNatural Resources Institute Finland (Luke)
dc.contributor.institutionEstación Experimental del Zaidin (CSIC)
dc.contributor.institutionThe Ohio State University
dc.contributor.institutionWageningen University & Research
dc.contributor.institutionFurst McNess Company
dc.contributor.institutionThe Pennsylvania State University
dc.date.accessioned2019-10-06T17:11:48Z
dc.date.available2019-10-06T17:11:48Z
dc.date.issued2019-11-01
dc.description.abstractEnteric methane (CH4) production attributable to beef cattle contributes to global greenhouse gas emissions. Reliably estimating this contribution requires extensive CH4 emission data from beef cattle under different management conditions worldwide. The objectives were to: 1) predict CH4 production (g d−1 animal−1), yield [g (kg dry matter intake; DMI)−1] and intensity [g (kg average daily gain)−1] using an intercontinental database (data from Europe, North America, Brazil, Australia and South Korea); 2) assess the impact of geographic region, and of higher- and lower-forage diets. Linear models were developed by incrementally adding covariates. A K-fold cross-validation indicated that a CH4 production equation using only DMI that was fitted to all available data had a root mean square prediction error (RMSPE; % of observed mean) of 31.2%. Subsets containing data with ≥25% and ≤18% dietary forage contents had an RMSPE of 30.8 and 34.2%, with the all-data CH4 production equation, whereas these errors decreased to 29.3 and 28.4%, respectively, when using CH4 prediction equations fitted to these subsets. The RMSPE of the ≥25% forage subset further decreased to 24.7% when using multiple regression. Europe- and North America-specific subsets predicted by the best performing ≥25% forage multiple regression equation had RMSPE of 24.5 and 20.4%, whereas these errors were 24.5 and 20.0% with region-specific equations, respectively. The developed equations had less RMSPE than extant equations evaluated for all data (22.5 vs. 23.2%), for higher-forage (21.2 vs. 23.1%), but not for the lower-forage subsets (28.4 vs. 27.9%). Splitting the dataset by forage content did not improve CH4 yield or intensity predictions. Predicting beef cattle CH4 production using energy conversion factors, as applied by the Intergovernmental Panel on Climate Change, indicated that adequate forage content-based and region-specific energy conversion factors improve prediction accuracy and are preferred in national or global inventories.en
dc.description.affiliationDepartment of Animal Science University of California
dc.description.affiliationFarmer's Business Network Inc.
dc.description.affiliationAnimal Science Department Universidade Federal de Viçosa
dc.description.affiliationSRUC, West Mains Road
dc.description.affiliationETH Zurich Institute of Agricultural Sciences
dc.description.affiliationDepartment of Animal and Veterinary Bioscience The University of Adelaide, Roseworthy Campus
dc.description.affiliationINRA UMR Herbivores VetAgro Sup Université Clermont Auvergne
dc.description.affiliationTeagasc Grange Dunsany
dc.description.affiliationDepartment of Agricultural Food and Nutritional Science University of Alberta
dc.description.affiliationLethbridge Research and Development Centre Agriculture and Agri-Food Canada
dc.description.affiliationAnimal Science Department São Paulo State University UNESP
dc.description.affiliationFlanders Research Institute for Agriculture Fisheries and Food Animal Sciences Unit, Scheldeweg 68
dc.description.affiliationThe University of Sydney Faculty of Science School of Life and Environmental Sciences
dc.description.affiliationCSIRO Agriculture and Food, Private Mail Bag, PO
dc.description.affiliationUSDA-ARS
dc.description.affiliationDepartment of Animal Science and Technology Sunchon National University
dc.description.affiliationResearch and Development EMBRAPA Southeast Livestock, Rod Washington Luiz, km 234, PO Box 339
dc.description.affiliationSchool of Agriculture Policy and Development University of Reading
dc.description.affiliationMilk Production Production Systems Natural Resources Institute Finland (Luke)
dc.description.affiliationEstación Experimental del Zaidin (CSIC)
dc.description.affiliationDepartment of Animal Sciences The Ohio State University
dc.description.affiliationWageningen Livestock Research Wageningen University & Research
dc.description.affiliationAnimal Nutrition Group Wageningen University & Research
dc.description.affiliationFurst McNess Company
dc.description.affiliationDepartment of Animal Science The Pennsylvania State University, University Park
dc.description.affiliationUnespAnimal Science Department São Paulo State University UNESP
dc.identifierhttp://dx.doi.org/10.1016/j.agee.2019.106575
dc.identifier.citationAgriculture, Ecosystems and Environment, v. 283.
dc.identifier.doi10.1016/j.agee.2019.106575
dc.identifier.issn0167-8809
dc.identifier.scopus2-s2.0-85067265264
dc.identifier.urihttp://hdl.handle.net/11449/190396
dc.language.isoeng
dc.relation.ispartofAgriculture, Ecosystems and Environment
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDietary variables
dc.subjectEmpirical modeling
dc.subjectForage content
dc.subjectGeographical region
dc.subjectMethane emission
dc.titlePrediction of enteric methane production, yield and intensity of beef cattle using an intercontinental databaseen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentZootecnia - FCAVpt

Arquivos