Logo do repositório
 

An application of neural network technique to correct the dome temperature effects on pyrgeometer measurements

dc.contributor.authorOliveira, A. P.
dc.contributor.authorSoares, J.
dc.contributor.authorBoznar, M. Z.
dc.contributor.authorMlakar, P.
dc.contributor.authorEscobedo, João Francisco [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionAMES DOO
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:20:24Z
dc.date.available2014-05-20T15:20:24Z
dc.date.issued2006-01-01
dc.description.abstractThis work describes an application of a multilayer perceptron neural network technique to correct dome emission effects on longwave atmospheric radiation measurements carried out using an Eppley Precision Infrared Radiometer (PIR) pyrgeometer. It is shown that approximately 7-month-long measurements of dome and case temperatures and meteorological variables available in regular surface stations (global solar radiation, air temperature, and air relative humidity) are enough to train the neural network algorithm and correct the observed longwave radiation for dome temperature effects in surface stations with climates similar to that of the city of São Paulo, Brazil. The network was trained using data from 15 October 2003 to 7 January 2004 and verified using data, not present during the network-training period, from 8 January to 30 April 2004. The longwave radiation values generated by the neural network technique were very similar to the values obtained by Fairall et al., assumed here as the reference approach to correct dome emission effects in PIR pyrgeometers. Compared to the empirical approach the neural network technique is less limited to sensor type and time of day (allows nighttime corrections).en
dc.description.affiliationUniv São Paulo, IAG, Dept Ciências Atmosfericas, Grp Micrometeorol, BR-05508900 São Paulo, Brazil
dc.description.affiliationAMES DOO, Ljubljana, Slovenia
dc.description.affiliationUniv Estadual Paulista Julio Mesquita Filho, Dept Environm Sci, Lab Solar Radiat, Botucatu, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista Julio Mesquita Filho, Dept Environm Sci, Lab Solar Radiat, Botucatu, SP, Brazil
dc.format.extent80-89
dc.identifierhttp://dx.doi.org/10.1175/JTECH1829.1
dc.identifier.citationJournal of Atmospheric and Oceanic Technology. Boston: Amer Meteorological Soc, v. 23, n. 1, p. 80-89, 2006.
dc.identifier.doi10.1175/JTECH1829.1
dc.identifier.fileWOS000235330000006.pdf
dc.identifier.issn0739-0572
dc.identifier.urihttp://hdl.handle.net/11449/31707
dc.identifier.wosWOS:000235330000006
dc.language.isoeng
dc.publisherAmer Meteorological Soc
dc.relation.ispartofJournal of Atmospheric and Oceanic Technology
dc.relation.ispartofjcr2.122
dc.relation.ispartofsjr1,285
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleAn application of neural network technique to correct the dome temperature effects on pyrgeometer measurementsen
dc.typeArtigo
dcterms.licensehttp://www2.ametsoc.org/ams/index.cfm/publications/authors/journal-and-bams-authors/author-resources/copyright-information/copyright-policy/
dcterms.rightsHolderAmer Meteorological Soc
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Botucatupt
unesp.departmentCiência Florestal - FCApt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000235330000006.pdf
Tamanho:
592.77 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: