Logotipo do repositório
 

Publicação:
Optimum-Path Forest Classifier for Large Scale Biometric Applications

dc.contributor.authorAfonso, L. C. S. [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorMarana, Aparecido Nilceu [UNESP]
dc.contributor.authorPoursaberi, A.
dc.contributor.authorYanushkevich, S.
dc.contributor.authorGavrilova, M.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:30:48Z
dc.date.available2014-05-20T15:30:48Z
dc.date.issued2012-01-01
dc.description.abstractThis paper addresses biometric identification using large databases, in particular, iris databases. In such applications, it is critical to have low response time, while maintaining an acceptable recognition rate. Thus, the trade-off between speed and accuracy must be evaluated for processing and recognition parts of an identification system. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. The existing Gauss-Laguerre Wavelet based coding scheme is used for iris encoding. The performance of the OPF and two other - Hamming and Bayesian - classifiers, is compared using small, medium, and large-scale databases. Such a comparison shows that the OPF has faster response for large-scale databases, thus performing better than the more accurate, but slower, classifiers.en
dc.description.affiliationSão Paulo State Univ, Dept Comp, Fac Sci, São Paulo, Brazil
dc.description.affiliationUnespSão Paulo State Univ, Dept Comp, Fac Sci, São Paulo, Brazil
dc.format.extent58-61
dc.identifierhttp://dx.doi.org/10.1109/EST.2012.31
dc.identifier.citation2012 Third International Conference on Emerging Security Technologies (est). Los Alamitos: IEEE Computer Soc, p. 58-61, 2012.
dc.identifier.doi10.1109/EST.2012.31
dc.identifier.lattes9039182932747194
dc.identifier.lattes6027713750942689
dc.identifier.urihttp://hdl.handle.net/11449/40109
dc.identifier.wosWOS:000311858000011
dc.language.isoeng
dc.publisherIEEE Computer Soc
dc.relation.ispartof2012 Third International Conference on Emerging Security Technologies (est)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleOptimum-Path Forest Classifier for Large Scale Biometric Applicationsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIEEE Computer Soc
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.author.lattes6027713750942689[3]
unesp.author.orcid0000-0003-4861-7061[3]
unesp.author.orcid0000-0002-6494-7514[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: