Publicação: Optimum-Path Forest Classifier for Large Scale Biometric Applications
dc.contributor.author | Afonso, L. C. S. [UNESP] | |
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.author | Marana, Aparecido Nilceu [UNESP] | |
dc.contributor.author | Poursaberi, A. | |
dc.contributor.author | Yanushkevich, S. | |
dc.contributor.author | Gavrilova, M. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T15:30:48Z | |
dc.date.available | 2014-05-20T15:30:48Z | |
dc.date.issued | 2012-01-01 | |
dc.description.abstract | This paper addresses biometric identification using large databases, in particular, iris databases. In such applications, it is critical to have low response time, while maintaining an acceptable recognition rate. Thus, the trade-off between speed and accuracy must be evaluated for processing and recognition parts of an identification system. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. The existing Gauss-Laguerre Wavelet based coding scheme is used for iris encoding. The performance of the OPF and two other - Hamming and Bayesian - classifiers, is compared using small, medium, and large-scale databases. Such a comparison shows that the OPF has faster response for large-scale databases, thus performing better than the more accurate, but slower, classifiers. | en |
dc.description.affiliation | São Paulo State Univ, Dept Comp, Fac Sci, São Paulo, Brazil | |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Comp, Fac Sci, São Paulo, Brazil | |
dc.format.extent | 58-61 | |
dc.identifier | http://dx.doi.org/10.1109/EST.2012.31 | |
dc.identifier.citation | 2012 Third International Conference on Emerging Security Technologies (est). Los Alamitos: IEEE Computer Soc, p. 58-61, 2012. | |
dc.identifier.doi | 10.1109/EST.2012.31 | |
dc.identifier.lattes | 9039182932747194 | |
dc.identifier.lattes | 6027713750942689 | |
dc.identifier.uri | http://hdl.handle.net/11449/40109 | |
dc.identifier.wos | WOS:000311858000011 | |
dc.language.iso | eng | |
dc.publisher | IEEE Computer Soc | |
dc.relation.ispartof | 2012 Third International Conference on Emerging Security Technologies (est) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | Optimum-Path Forest Classifier for Large Scale Biometric Applications | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | IEEE Computer Soc | |
dspace.entity.type | Publication | |
unesp.author.lattes | 9039182932747194 | |
unesp.author.lattes | 6027713750942689[3] | |
unesp.author.orcid | 0000-0003-4861-7061[3] | |
unesp.author.orcid | 0000-0002-6494-7514[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Licença do Pacote
1 - 2 de 2
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: