Publicação:
Improving hierarchical document cluster labels through candidate term selection

dc.contributor.authorDos Santos, Fabiano Fernandes
dc.contributor.authorDe Carvalho And, Veronica Oliveira [UNESP]
dc.contributor.authorRezende, Solange Oliveira
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:26:58Z
dc.date.available2014-05-27T11:26:58Z
dc.date.issued2012-09-03
dc.description.abstractOne way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels must be built using all the terms in the documents of the collection. This paper presents the SeCLAR method, which explores the use of association rules in the selection of good candidates for labels of hierarchical document clusters. The purpose of this method is to select a subset of terms by exploring the relationship among the terms of each document. Thus, these candidates can be processed by a classical method to generate the labels. An experimental study demonstrates the potential of the proposed approach to improve the precision and recall of labels obtained by classical methods only considering the terms which are potentially more discriminative. © 2012 - IOS Press and the authors. All rights reserved.en
dc.description.affiliationInstituto de Ciências Matemáticas e de Computaçã o Universidade de São Paulo (USP), R. Dr. Carlos de Camargo Salles, 446 Ap 13, São Carlos, SP
dc.description.affiliationInstituto de Geociências e Ciências Exatas Universidade Estadual Paulista (UNESP), Rio Claro, SP
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas Universidade Estadual Paulista (UNESP), Rio Claro, SP
dc.format.extent43-58
dc.identifierhttp://dx.doi.org/10.3233/IDT-2012-0121
dc.identifier.citationIntelligent Decision Technologies, v. 6, n. 1, p. 43-58, 2012.
dc.identifier.doi10.3233/IDT-2012-0121
dc.identifier.issn1872-4981
dc.identifier.issn1875-8843
dc.identifier.scopus2-s2.0-84865456636
dc.identifier.urihttp://hdl.handle.net/11449/73556
dc.language.isoeng
dc.relation.ispartofIntelligent Decision Technologies
dc.relation.ispartofsjr0,169
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectassociation rules
dc.subjectLabeling hierarchical clustering
dc.subjecttext mining
dc.subjectClassical methods
dc.subjectExperimental studies
dc.subjectHier-archical clustering
dc.subjectHierarchical document
dc.subjectPrecision and recall
dc.subjectSearch and retrieval
dc.subjectStructural representation
dc.subjectText mining
dc.subjectData mining
dc.subjectAssociation rules
dc.titleImproving hierarchical document cluster labels through candidate term selectionen
dc.typeArtigo
dcterms.licensehttp://www.iospress.nl/service/authors/author-copyright-agreement/
dspace.entity.typePublication

Arquivos

Coleções