Logotipo do repositório
 

Publicação:
Polyaniline-based field effect transistor for DNA/RNA biomarker sensing: Comparison to electrochemical impedance and inorganic layer

dc.contributor.authorPedroza Dias Mello, Hugo Jose Nogueira
dc.contributor.authorBachour Junior, Bassam
dc.contributor.authorMulato, Marcelo
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:49:12Z
dc.date.available2021-06-25T11:49:12Z
dc.date.issued2021-02-01
dc.description.abstractOne relevant aspect of the research in materials science focus on studying materials properties for applications in the field of sensing and biosensing devices aiming to obtain portable, stable, sensitive, and low-cost detection systems for a broad range of diseases, traumas, and infections. We report a polyaniline (PANI)-based extended-gate field effect transistor DNA/RNA (DNA-EGFET) biosensor. The biosensor is based on a functionalized Au reference electrode with thiolated bio-receptor single-strand DNA (ssDNA) corresponding to the mu DNA-224, an overexpressed DNA biomarker sample for rectal colon cancer, and the transduction system is based on an electrodeposited PANI thin film as sensing stage. Variations on net surface charge of the hybridized single strand DNA led to changes of the output voltage from the FET system, which could be correlated to the concentration of the detected complementary DNA. Comparison between the potentiometric EGFET biosensor and the electrochemical impedance spectroscopy (EIS) biosensor used for DNA/RNA measurements and the use of organic and inorganic (metal oxide) semiconducting sensing materials were performed. This DNA-EGFET biosensor offered fast response, sensitivity of 3.3 +/- 0.3 mV/log[tDNA], linearity of 96 % in a detection range from 1 pmol/L to 1 mu mol/L and LoD of 9.77 pmol/L in buffer solution. The application and comparison of the PANI based DNA-EGFET for measurements of DNA biomarkers was demonstrated as a proof-of-concept of the advantages and easy fabrication of the device. (C) 2020 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Sao Paulo, Fac Philosophy Sci & Letters Ribeirao Preto, Dept Phys, BR-14040901 Ribeirao Preto, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2017/24201-6
dc.description.sponsorshipIdFAPESP: 2014/24559-0
dc.description.sponsorshipIdCNPq: 308713/2018-4
dc.format.extent7
dc.identifierhttp://dx.doi.org/10.1016/j.sna.2020.112481
dc.identifier.citationSensors And Actuators A-physical. Lausanne: Elsevier Science Sa, v. 318, 7 p., 2021.
dc.identifier.doi10.1016/j.sna.2020.112481
dc.identifier.issn0924-4247
dc.identifier.urihttp://hdl.handle.net/11449/209120
dc.identifier.wosWOS:000609447300009
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofSensors And Actuators A-physical
dc.sourceWeb of Science
dc.subjectField-effect transistor
dc.subjectImpedimetric
dc.subjectSemiconducting polymer
dc.subjectBiosensor
dc.subjectDNA
dc.titlePolyaniline-based field effect transistor for DNA/RNA biomarker sensing: Comparison to electrochemical impedance and inorganic layeren
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication

Arquivos

Coleções