Publicação: Functional N-cycle genes in soil and N2O emissions in tropical grass-maize intercropping systems
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
There is evidence that forage grasses such as Megathyrsus and Urochloa can suppress nitrification, with direct or indirect consequences on soil inorganic N dynamics and nitrous oxide (N2O) emissions. However, the influence of soil chemical properties on the dynamics of functional N-genes and losses of N in maize (Zea mays L.) intercropped with forage grasses under N fertilization is poorly understood. In this study, soil samples and N2O emissions were analyzed from a field experiment in which maize (fertilized or not with ammonium-based fertilizer) was intercropped with Guinea grass (M. maximus cv. Tanzânia), palisade grass (U. brizantha cv. Marandu), and ruzigrass (U. ruziziensis cv. Comum). Soil N-cycle microorganisms [16S rRNA of bacteria and archaea, nifH (gene encoding N2-fixing bacteria), ammonia-oxidizing bacteria (AOB) and archaea (AOA), nirS (encoding nitrite reductase), and nosZ (encoding nitrous oxide reductase)] were influenced by forage grass, N fertilization, and sampling time, but no evidence of biological nitrification inhibition was found. Palisade grass was associated with a higher abundance of nifH (7.0 × 105 gene copies g−1 soil, on average) in the absence of N compared with the other grasses (4.3 × 105 gene copies g−1 soil, on average). Nitrogen fertilization increased the abundance of AOB but not AOA. Furthermore, N2O flux was influenced by AOB, water-filled pore space, and N fertilization, whereas the cumulative N2O emission and fertilizer-induced emission factor (0.36%, on average) were not affected by the grasses. In conclusion, this study reveals the strong dominance of AOB under ammonium supply, potentially stimulating N2O emissions in maize-forage grass intercropping systems.
Descrição
Palavras-chave
Biological nitrification inhibition, Megathyrsus, N fertilization, qPCR, Urochloa, Zea mays L.
Idioma
Inglês
Como citar
Soil Biology and Biochemistry, v. 169.