Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Estimating Forest Heights and Wood Volume using a Deep Learning Approach from Gedi Waveform Data

dc.contributor.authorFayad, Ibrahim
dc.contributor.authorIenco, Dino
dc.contributor.authorBaghdadi, Nicolas
dc.contributor.authorGaetano, Raffaele
dc.contributor.authorAlvares, Clayton Alcarde [UNESP]
dc.contributor.authorStape, Jose Luiz [UNESP]
dc.contributor.authorScolforo, Henrique Ferraco
dc.contributor.authorLe Maire, Guerric
dc.contributor.institutionAgroParisTech
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institution13465-970
dc.contributor.institutionUmr Eco&Sols
dc.contributor.institutionMontpellier SupAgro
dc.date.accessioned2023-07-29T12:32:40Z
dc.date.available2023-07-29T12:32:40Z
dc.date.issued2022-01-01
dc.description.abstractThe Global Ecosystem Dynamics Investigation (GEDI) instrument, as all FW systems, relies on very sophisticated pre-processing steps to generate a priori metrics in order to accurately estimate forest characteristics, such as forest heights and wood volume. The ever-expanding volume of acquired GEDI data, which to September 2020 comprised more than 25 billion shots, and requiring more than 90 TB of storage space, raises new challenges in terms of adapted preprocessing methods for the suitable exploitation of such a huge and complex amount of LiDAR data. Therefore, to avoid metric computation, we leveraged deep learning techniques in order to estimate canopy dominant heights (Hdom) and wood volume (V) of Eucalyptus plantations over five different regions in Brazil. Performance comparisons were conducted between a convolutional neural network based model that uses GEDI waveform data and a previously used, metric based, Random Forest regressor (RF). Cross-validated results showed that the CNN based model compared well against the RF counterpart for both Hdom and V. Indeed, the RMSE on the estimation of Hdom from the CNN based model was 1.61 m with a coefficient of determination R2 of 0.90, while the RF model produced an accuracy on Hdom estimates of 1.45 m(R2=0.92). For V, CNN based estimates was 27.35 m3.ha-1(R2 of 0.88), while for RF, the RMSE was 27.60 m3.ha-1 (R2=0.88).en
dc.description.affiliationCirad Cnrs Inrae Tetis Univ Montpellier AgroParisTech
dc.description.affiliationUnesp Faculdade de Ciências Agronômicas, SP
dc.description.affiliationSuzano SA 13465-970, Estrada Limeira, 391, SP
dc.description.affiliationCirad Umr Eco&Sols
dc.description.affiliationEco&Sols Univ Montpellier Cirad Inra Ird Montpellier SupAgro
dc.description.affiliationUnespUnesp Faculdade de Ciências Agronômicas, SP
dc.format.extent7301-7304
dc.identifierhttp://dx.doi.org/10.1109/IGARSS46834.2022.9883973
dc.identifier.citationInternational Geoscience and Remote Sensing Symposium (IGARSS), v. 2022-July, p. 7301-7304.
dc.identifier.doi10.1109/IGARSS46834.2022.9883973
dc.identifier.scopus2-s2.0-85140371370
dc.identifier.urihttp://hdl.handle.net/11449/246138
dc.language.isoeng
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)
dc.sourceScopus
dc.subjectBrazil
dc.subjectCNN
dc.subjectDominant height
dc.subjectEucalyptus
dc.subjectGEDI
dc.subjectLidar
dc.subjectWood volume
dc.titleEstimating Forest Heights and Wood Volume using a Deep Learning Approach from Gedi Waveform Dataen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationef1a6328-7152-4981-9835-5e79155d5511
relation.isOrgUnitOfPublication.latestForDiscoveryef1a6328-7152-4981-9835-5e79155d5511
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Botucatupt

Arquivos