Logotipo do repositório
 

Publicação:
Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations

dc.contributor.authorCherri, Luiz H.
dc.contributor.authorCherri, Adriana C. [UNESP]
dc.contributor.authorSoler, Edilaine M. [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionODM
dc.date.accessioned2018-11-26T16:04:51Z
dc.date.available2018-11-26T16:04:51Z
dc.date.issued2018-09-01
dc.description.abstractThe irregular strip packing problem consists of cutting a set of convex and non-convex two-dimensional polygonal pieces from a board with a fixed height and infinite length. Owing to the importance of this problem, a large number of mathematical models and solution methods have been proposed. However, only few papers consider that the pieces can be rotated at any angle in order to reduce the board length used. Furthermore, the solution methods proposed in the literature are mostly heuristic. This paper proposes a novel mixed integer quadratically-constrained programming model for the irregular strip packing problem considering continuous rotations for the pieces. In the model, the pieces are allocated on the board using a reference point and its allocation is given by the translation and rotation of the pieces. To reduce the number of symmetric solutions for the model, sets of symmetry-breaking constraints are proposed. Computational experiments were performed on the model with and without symmetry-breaking constraints, showing that symmetry elimination improves the quality of solutions found by the solution methods. Tests were performed with instances from the literature. For two instances, it was possible to compare the solutions with a previous model from the literature and show that the proposed model is able to obtain numerically accurate solutions in competitive computational times.en
dc.description.affiliationUniv Sao Paulo, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationODM, Rua Alfredo Lopes 1717,Sala E10, BR-13560460 Sao Carlos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2015/24987-4
dc.description.sponsorshipIdFAPESP: 2015/03066-8
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdCNPq: 477481/2013-2
dc.format.extent89-107
dc.identifierhttp://dx.doi.org/10.1007/s10898-018-0638-x
dc.identifier.citationJournal Of Global Optimization. Dordrecht: Springer, v. 72, n. 1, p. 89-107, 2018.
dc.identifier.doi10.1007/s10898-018-0638-x
dc.identifier.fileWOS000442604900006.pdf
dc.identifier.issn0925-5001
dc.identifier.lattes196503152950828
dc.identifier.orcid0000-0002-7615-5768
dc.identifier.urihttp://hdl.handle.net/11449/160523
dc.identifier.wosWOS:000442604900006
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofJournal Of Global Optimization
dc.relation.ispartofsjr1,311
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMixed integer non-linear programming
dc.subjectNesting problems
dc.subjectIrregular pieces
dc.subjectContinuous rotations
dc.titleMixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotationsen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.lattes196503152950828[3]
unesp.author.orcid0000-0002-7615-5768[3]

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000442604900006.pdf
Tamanho:
827.64 KB
Formato:
Adobe Portable Document Format
Descrição:

Coleções