Logotipo do repositório
 

Publicação:
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast

dc.contributor.authorMedeiros, Debora D.
dc.contributor.authorNotsu, Hirofumi
dc.contributor.authorOishi, Cassio M. [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionKanazawa Univ
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T17:23:04Z
dc.date.available2022-04-28T17:23:04Z
dc.date.issued2021-01-01
dc.description.abstractIn this work, new finite difference schemes are presented for dealing with the upper convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equation of the popular viscoelastic models, is reformulated in order to obtain approximations of second-order in time for solving a simplified constitutive equation in one and two dimensions. The theoretical analysis of the truncation errors of the methods takes into account the linear and quadratic interpolation operators based on a Lagrangian framework. Numerical experiments illustrating the theoretical results for the model equation defined in one and two dimensions are included. Finally, the finite difference approximations of second-order in time are also applied for solving a two-dimensional Oldroyd-B constitutive equation subjected to a prescribed velocity field at different Weissenberg numbers.en
dc.description.affiliationUniv Sao Paulo, Dept Matemat Aplicada & Estat, Inst Ciencias Matemat & Comp ICMC, Campus Sao Carlos, BR-1025480 Sao Paulo, SP, Brazil
dc.description.affiliationKanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, Japan
dc.description.affiliationUniv Estadual Paulista, Dept Matemat & Comp, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat & Comp, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.sponsorshipCenter of Mathematical Sciences Applied to Industry (Cepid-CeMEAI) grant
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipJSPS KAKENHI
dc.description.sponsorshipJST PRESTO grant
dc.description.sponsorshipJST CREST grant
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCenter of Mathematical Sciences Applied to Industry (Cepid-CeMEAI) grant: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2019/08742-2
dc.description.sponsorshipIdFAPESP: 2017/11428-2
dc.description.sponsorshipIdJSPS KAKENHI: JP18H01135
dc.description.sponsorshipIdJSPS KAKENHI: JP20H01823
dc.description.sponsorshipIdJSPS KAKENHI: JP20KK0058
dc.description.sponsorshipIdJSPS KAKENHI: JP21H04431
dc.description.sponsorshipIdJST PRESTO grant: JPMJPR16EA
dc.description.sponsorshipIdJST CREST grant: JPMJCR2014
dc.description.sponsorshipIdCNPq: 305383/2019-1
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.format.extent2955-2988
dc.identifierhttp://dx.doi.org/10.1137/20M1364990
dc.identifier.citationSiam Journal On Numerical Analysis. Philadelphia: Siam Publications, v. 59, n. 6, p. 2955-2988, 2021.
dc.identifier.doi10.1137/20M1364990
dc.identifier.issn0036-1429
dc.identifier.urihttp://hdl.handle.net/11449/218786
dc.identifier.wosWOS:000748784400007
dc.language.isoeng
dc.publisherSiam Publications
dc.relation.ispartofSiam Journal On Numerical Analysis
dc.sourceWeb of Science
dc.subjectgeneralized Lie derivative
dc.subjectLagrangian scheme
dc.subjectfinite difference method
dc.titleSECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\asten
dc.typeArtigo
dcterms.rightsHolderSiam Publications
dspace.entity.typePublication
unesp.departmentMatemática e Computação - FCTpt

Arquivos