Publicação: Obtaining carbon feedbacks in the big data era: a perspective to Central-north of Brazil
Carregando...
Data
2020-12-18
Autores
Orientador
Júnior, Newton La Scala 

Silva Junior, Carlos Antonio
silva junior, carlos
Coorientador
Pós-graduação
Agronomia (Ciência do Solo) - FCAV
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Tese de doutorado
Direito de acesso
Acesso aberto

Resumo
Resumo (inglês)
With the emergence of the era of earth observation in high resolution, remote sensing data's exponential growth has occurred in recent years. Thus, it is possible to carry out studies to monitor the carbon cycle on a global and regional scale, thus generating carbon feedback that can contribute to climate governance and decision-making to mitigate the effects that cause climate change. Therefore, this study was designed with the purpose of printing feedbacks related to the carbon cycle using Big Data in earth observation using remote sensing and climatic variables obtained by simulation models for the Central-North of Brazil, an important region due to the presence of important biomes such as the Amazonia, Cerrado, Pantanal and Atlantic Forest, besides being one of the most representative regions in the advancement of Brazilian agribusiness. Three studies were carried separately for the following sub-regions: Mato Grosso, Mato Grosso do Sul, and Eastern Amazonia. For each region were discussed different problems. A time series was analyzed from January 2015 to December 2018. The variables XCO2, Solar-induced fluorescence at 757nm, and 771nm were extracted from Orbiting Carbon Observatory-2 -OCO-2. The NDVI (MOD13A1), EVI (MOD13A1), and evapotranspiration (MOD16A2), data from Moderate Resolution Imaging Spectroradiometer - MODIS and climate variables (precipitation, wind speed, air temperature and relative humidity) as of Prediction of Worldwide Energy Resources - NASA POWER. The data were submitted to descriptive statistics, regression, correlation, temporal analysis and spatial interpolation with the kriging method and hotspots. It was observed that both in biomes and forest areas in Mato Grosso do Sul, the temporal variation of atmospheric CO2 concentration is mainly governed by photosynthesis (SIFR²adj. = 0.07-0.55; p<0.05, NDVIR²adj. = 0.18-0.63; p<0.05, and EVIR²adj. = 0.20-0.49; p<0.05) and that photosynthesis is positively related to evapotranspiration (R²adj. = 0.20-0.44; p<0.001) and air temperature (R²adj. = 0.26-0.44; p<0.001). In Mato Grosso and Eastern Amazonia, SIF was also an important variable in explaining the temporal variability of XCO2 (r= -0.84; p<0.01). However, in these regions, this relationship is also observed spatially. In general, the time variations of XCO2 in the north-central region of Brazil varies between the dry and rainy periods, this was clear in all studies. As for the spatial variation of XCO2, it varies according to the type of land use and the time of year. Given the results presented in this work, it is clear that the use of big data from remote sensing observations are valuable tools in understanding the carbon cycle since the relationships observed in the intersection of these data generate results that are clearly explained by the physical and biological processes around the soil-plant-atmosphere system.
Resumo (português)
Com o surgimento da era da observação da Terra em alta resolução, o crescimento exponencial dos dados de sensoriamento remoto ocorreu nos últimos anos. Assim, é possível realizar estudos para monitorar o ciclo do carbono em escala global e regional, gerando feedback de carbono que pode contribuir para a governança climática e a tomada de decisões para mitigar os efeitos que causam as mudanças climáticas. Portanto, este estudo foi desenhado com o objetivo de imprimir feedbacks relacionados ao ciclo do carbono utilizando Big Data para o Centro-Norte do Brasil, uma região importante devido à presença de importantes. biomas como a Amazônia, Cerrado, Pantanal e Mata Atlântica, além de ser uma das regiões mais representativas no avanço do agronegócio brasileiro. Três estudos foram realizados separadamente para as seguintes sub-regiões: Mato Grosso, Mato Grosso do Sul e Amazônia Oriental. Para cada região foram discutidos problemas diferentes. Uma série temporal foi analisada de janeiro de 2015 a dezembro de 2018. As variáveis XCO2, fluorescência induzida pelo sol a 757 nm e 771 nm foram extraídas do Orbiting Carbon Observatory-2 -OCO-2. O NDVI (MOD13A1), EVI (MOD13A1) e evapotranspiração (MOD16A2), dados do espectrorradiômetro de imagem de resolução moderada - MODIS e variáveis climáticas (precipitação, velocidade do vento, temperatura do ar e umidade relativa) como da Prediction of Worldwide Energy Resources - NASA POWER . Os dados foram submetidos à estatística descritiva, regressão, correlação, análise temporal e interpolação espacial com o método de krigagem e hotspots. Observou-se que tanto em biomas quanto em áreas florestais em Mato Grosso do Sul, a variação temporal da concentração de CO2 atmosférico é governada principalmente pela fotossíntese (SIF R²adj. = 0,07-0,55; p <0,05, NDVI R²adj. = 0,18-0,63; p <0,05 e EVI R²adj. = 0,20-0,49; p <0,05) e que a fotossíntese está positivamente relacionada à evapotranspiração (R²adj. = 0,20-0,44; p <0,001) e temperatura do ar (R²adj. = 0,26-0,44; p <0,001). No Mato Grosso e na Amazônia Oriental, o SIF também foi uma variável importante para explicar a variabilidade temporal do XCO2 (r = -0,84; p <0,01). Porém, nessas regiões, essa relação também é observada espacialmente. Em geral, as variações temporais do XCO2 na região centro-norte do Brasil variam entre os períodos seco e chuvoso, isso ficou claro em todos os estudos. Já a variação espacial do XCO2 varia de acordo com o tipo de uso do solo e a época do ano. Diante dos resultados apresentados neste trabalho, fica claro que o uso de big data a partir de observações de sensoriamento remoto são ferramentas valiosas na compreensão do ciclo do carbono, uma vez que as relações observadas na intersecção desses dados geram resultados que são claramente explicados pelos aspectos físicos e biológicos. processos em torno do sistema solo-planta-atmosfera.
Descrição
Palavras-chave
Idioma
Inglês