Logotipo do repositório
 

Publicação:
Data-driven identification of rotating machines using ARMA deterministic parameter evolution in the angle/time domain

dc.contributor.authorBicudo Jambersi, Andreyson [UNESP]
dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorAntoni, Jérôme
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Lyon
dc.date.accessioned2020-12-12T01:35:11Z
dc.date.available2020-12-12T01:35:11Z
dc.date.issued2020-09-01
dc.description.abstractThe functional-series angle-/time-varying autoregressive moving-average (AT-FS-ARMA) model was used to model and analyze vibration-based signals from internal combustion engines. This approach is derived from the formulation of the time–angle periodically correlated processes, a relatively new topic in the cyclostationary framework, which has gained attention for modeling of mechanical signals. The AT-FS-ARMA model consists of traditional time-varying FS-ARMA-like models, but with the projection coefficients expanded in terms of the angular variable, dependent on time. Therefore, the method has the advantage of considering the angle periodicities often present in vibration-based signals from rotating and reciprocating machines. The performance is illustrated by an experimental application of signals measured in a diesel internal combustion engine (ICE) with a constant operating speed. The accuracy of the model is evaluated through the residual sum of squares normalized by the series sum of squares. To illustrate the use of the AT-FS-ARMA for vibration analysis of ICEs, parametric angle–frequency spectrum was estimated and compared to angular-varying pseudo-Wigner–Ville distribution/spectrum. The results showed that AT-FS-ARMA provides a useful complementary tool for analysis.en
dc.description.affiliationDepartamento de Engenharia Mecânica UNESP - Universidade Estadual Paulista
dc.description.affiliationINSA-Lyon Laboratoire Vibrations Acoustique Univ Lyon
dc.description.affiliationUnespDepartamento de Engenharia Mecânica UNESP - Universidade Estadual Paulista
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 306526/2019-0
dc.description.sponsorshipIdCAPES: Capes/PDSE/Process n. 88881.189237/2018-01
dc.description.sponsorshipIdCAPES: Finance Code 001
dc.identifierhttp://dx.doi.org/10.1007/s40430-020-02554-5
dc.identifier.citationJournal of the Brazilian Society of Mechanical Sciences and Engineering, v. 42, n. 9, 2020.
dc.identifier.doi10.1007/s40430-020-02554-5
dc.identifier.issn1806-3691
dc.identifier.issn1678-5878
dc.identifier.scopus2-s2.0-85089501205
dc.identifier.urihttp://hdl.handle.net/11449/199267
dc.language.isoeng
dc.relation.ispartofJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.sourceScopus
dc.subjectAngle-/time-varying ARMA models
dc.subjectCyclostationarity
dc.subjectInternal combustion diesel engine
dc.subjectRotating machines and/or reciprocating machines
dc.subjectSystem identification
dc.titleData-driven identification of rotating machines using ARMA deterministic parameter evolution in the angle/time domainen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-9223-2236[1]
unesp.author.orcid0000-0001-6430-3746[2]
unesp.author.orcid0000-0003-4128-476X[3]

Arquivos

Coleções