Publicação: Co-reference Analysis Through Descriptor Combination
dc.contributor.author | Mansano, A. F. | |
dc.contributor.author | Hrushcka, E. R. | |
dc.contributor.author | Papa, J. P. [UNESP] | |
dc.contributor.author | Tavares, JMRS | |
dc.contributor.author | Jorge, RMN | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:54:16Z | |
dc.date.available | 2018-11-26T17:54:16Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | NELL (Never-Ending Language Learning) is the first never-ending learning system presented in the literature. It has been modeled to create a knowledge based on an autonomous way, reading the web 24 hours per day, 7 days per week. As such, the co-reference analysis has a crucial role in NELL's learning paradigm. In this paper, we approach a method to combining different feature vectors in order to solve the coreference resolution problem. In order to fulfill this work, an optimization task is devised by meta-heuristic techniques in order to maximize the separability of samples in the feature space, being the optimization process guided by the accuracy of Optimum Path Forest in a validation set. The experiments showed the proposed methodology can obtain much better results when compared to the performance of individual feature extraction algorithms. | en |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Bauru, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Bauru, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 470571/2013-6 | |
dc.format.extent | 525-534 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-319-68195-5_57 | |
dc.identifier.citation | Vipimage 2017. Cham: Springer International Publishing Ag, v. 27, p. 525-534, 2018. | |
dc.identifier.doi | 10.1007/978-3-319-68195-5_57 | |
dc.identifier.issn | 2212-9391 | |
dc.identifier.uri | http://hdl.handle.net/11449/164366 | |
dc.identifier.wos | WOS:000437032100057 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Vipimage 2017 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Never-ending language learning | |
dc.subject | Meta-heuristics | |
dc.subject | Descriptor combination | |
dc.title | Co-reference Analysis Through Descriptor Combination | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |