Logotipo do repositório
 

Publicação:
Implementação em hardware de um sistema inteligente para detecção de plantas daninhas em plantações de soja utilizando máquinas de vetores de suporte e redes neurais artificiais

dc.contributor.advisorMarranghello, Norian [UNESP]
dc.contributor.authorCaldas Júnior, Carlos Roberto Dutra [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-06-11T19:29:39Z
dc.date.available2014-06-11T19:29:39Z
dc.date.issued2012-08-02
dc.description.abstractA presença de sistemas automatizados é cada vez mais comum para as pessoas. Seus exemplos vão desde máquinas de lavar, que executam praticamente todo o processo de lavagem e secagem de roupas, até linhas de produção em fábricas dos mais diversos produtos. Esses são exemplos de aplicações que exigem pouca interferência humana no processo, já que as etapas realizadas pelos sistemas são bem definidas e iterativas. Porém, outros tipos de processos podem exigir capacidade de discernimento daquele – ou daquilo – que os executam. Para automatizar esse tipo de processo uma das alternativas é o uso de técnicas de inteligência artificial. Esse trabalho visa realizar uma análise comparativa entre técnicas de inteligência artificial, quais sejam Redes Neurais Artificiais e Máquinas de Vetores de Suporte. Com essa análise espera-se estabelecer qual técnica é mais vantajosa para implementação em hardware de sistemas inteligentes, por meio do uso das principais métricas de projeto de circuitos digitais: tamanho do circuito gerado, consumo de energia e desempenho. Para tanto, foram realizados diversos testes com técnicas de pré-processamento e extração de características das imagens para determinar requisitos necessários para o funcionamento do sistema. A partir desses requisitos foram implementadas diversas arquiteturas de sistemas inteligentes para obter-se o classificador mais adequado para resolver o problema. Por fim, o classificador escolhido foi implementado em FPGA na forma de um módulo, o qual se integrará a um sistema maior, para interpretação de imagens digitais para detecção de ervas daninhas em plantações de sojapt
dc.description.abstractAutomated systems have become common for people. Examples range from washing machines, which perform almost the entire cloth washing and drying process, to the production of many products. These are examples of applications that require modest human interference, since the steps taken by the systems are well defined and iterative. However, other processes may require a capacity of judgment of the natural or artificial system performing them. An alternative to automate this kind of process is the use of artificial intelligence techniques. This study aims at a comparative analysis of artificial intelligence techniques, namely Artificial Neural Networks and Support Vector Machines. With this analysis we hope to establish which technique is more advantageous for hardware implementation of an intelligent system, through the use of key metrics for digital circuit design: circuit size, power consumption and performance. Therefore, several tests were performed with image preprocessing and feature extraction techniques to determine requirements for system operation. From these requirements, various architectures for intelligent systems were implemented to obtain the most appropriate classifier to solve the problem. Finally, the chosen classifier was implemented in FPGA as a module to fit into a larger system for digital image interpretation for the detection of weeds in crops of soybeansen
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent70 f. : il. color.
dc.identifier.aleph000696838
dc.identifier.capes33004153073P2
dc.identifier.citationCALDAS JÚNIOR, Carlos Roberto Dutra. Implementação em hardware de um sistema inteligente para detecção de plantas daninhas em plantações de soja utilizando máquinas de vetores de suporte e redes neurais artificiais. 2012. 70 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2012.
dc.identifier.filecaldasjunior_crd_me_sjrp.pdf
dc.identifier.lattes2098623262892719
dc.identifier.orcid0000-0003-1086-3312
dc.identifier.urihttp://hdl.handle.net/11449/98648
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.sourceAleph
dc.subjectProcessamento de imagens - Tecnicas digitaispt
dc.subjectSistemas de computaçãopt
dc.subjectSistemas inteligentes de controlept
dc.subjectAgricultura de precisãopt
dc.subjectRedes neurais (Computação)pt
dc.subjectDigital image processingen
dc.subjectIntelligent systemsen
dc.subjectArtificial neural networken
dc.titleImplementação em hardware de um sistema inteligente para detecção de plantas daninhas em plantações de soja utilizando máquinas de vetores de suporte e redes neurais artificiaispt
dc.typeDissertação de mestrado
dspace.entity.typePublication
unesp.advisor.lattes2098623262892719
unesp.advisor.orcid0000-0003-1086-3312
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.graduateProgramCiência da Computação - FC/FCT/IBILCE/IGCE 33004153073P2pt
unesp.knowledgeAreaSistemas de computaçãopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
caldasjunior_crd_me_sjrp.pdf
Tamanho:
654.13 KB
Formato:
Adobe Portable Document Format