Logotipo do repositório
 

Publicação:
Metabolic, ventilatory, and hygric physiology of a South American marsupial, the long-furred woolly mouse opossum

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Alliance Communications Group Division Allen Press

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The physiology of the long-furred woolly mouse opossum (Micoureus paraguayanus) conformed to that of other marsupials Body temperature at thermoneutrality (all values reported as mean +/- SE) was 33.3 degrees C +/- 0.3 degrees C and basal metabolic rate was 0.760 +/- 0.074 ml O(2) g(-1) h(-1) Opossums were thermolabile at low ambient temperature (T(a)) but still maintained a considerable differential between body temperature and T(a), with an increase in metabolic heat production as T(a) decreased This was accomodated by an increase in minute volume, mediated by an increase in both respiratory frequency and tidal volume at low T(a) Basal respiratory frequency was 34.2 +/- 3.8 breaths/min and tidal volume was 1.62 +/- 0.28 ml; minute volume was 53 +/- 7 ml/mm Oxygen extraction remained constant at 13.6% +/- 1.1% Wet thermal conductance was high (0.338 +/- 0.091 ml O(2) g(-1) h(-1) degrees C(-1), 185% of predicted) but conformed statistically to that of other marsupials. A positive relationship existed between ambient temperature and evaporative water loss; standard evaporative water loss was 2.03 +/- 0.21 mg H(2)O g(-1) h(-1). The point of relative water economy was 11 degrees C, the lowest yet measured for a marsupial. We found no evidence that this South American marsupial had an elevated metabolic physiology, as might be expected from its neotropical distribution and sympatry with placental mammals. Clearly, marsupials can survive alongside placental mammals without any specific physiological adaptation, although this ability may be restricted to species with generalized low-energy ecological niches. DOI: 10.1644/09-MAMM-A-138R.1.

Descrição

Palavras-chave

basal metabolic rate, body temperature, evaporative water loss, marsupial, oxygen extraction, relative water economy, ventilation

Idioma

Inglês

Como citar

Journal of Mammalogy. Lawrence: Alliance Communications Group Division Allen Press, v. 91, n. 1, p. 1-10, 2010.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação