Logo do repositório
 

Fine-Tuning Restricted Boltzmann Machines Using No-Boundary Jellyfish

dc.contributor.authorRodrigues, Douglas [UNESP]
dc.contributor.authorHenrique de Rosa, Gustavo [UNESP]
dc.contributor.authorAugusto Pontara da Costa, Kelton [UNESP]
dc.contributor.authorSamuel Jodas, Danilo [UNESP]
dc.contributor.authorPaulo Papa, João [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:15:36Z
dc.date.issued2023-01-01
dc.description.abstractMetaheuristic algorithms present elegant solutions to many problems regardless of their domain. The Jellyfish Search (JS) algorithm is inspired by how jellyfish searches for food in ocean currents and performs movements within the swarm. In this work, we propose a new version of the JS algorithm called No-Boundary Jellyfish Search (NBJS) to improve the convergence rate. The NBJS was applied to fine-tune a Restricted Boltzmann Machine (RBM) in the context of image reconstruction. For validating the proposal, the experiments were carried out on three public datasets to compare the performance of the NBJS algorithm with its original version and two other metaheuristic algorithms. The results showed that proposed approach is viable, for it obtained similar or even lower errors compared to models trained without fine-tuning.en
dc.description.affiliationDepartment of Computing São Paulo State University
dc.description.affiliationUnespDepartment of Computing São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdFAPESP: #2019/02205-5
dc.description.sponsorshipIdFAPESP: #2019/07665-4
dc.description.sponsorshipIdFAPESP: #2019/18287-0
dc.description.sponsorshipIdFAPESP: #2021/05516-1
dc.description.sponsorshipIdCNPq: 308529/2021-9
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.format.extent65-73
dc.identifierhttp://dx.doi.org/10.5220/0011643400003417
dc.identifier.citationProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 4, p. 65-73.
dc.identifier.doi10.5220/0011643400003417
dc.identifier.issn2184-4321
dc.identifier.issn2184-5921
dc.identifier.scopus2-s2.0-85166347115
dc.identifier.urihttps://hdl.handle.net/11449/309455
dc.language.isoeng
dc.relation.ispartofProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
dc.sourceScopus
dc.subjectBio-Inspired Approaches
dc.subjectComputing Methodologies
dc.subjectNeural Networks
dc.subjectReconstruction
dc.titleFine-Tuning Restricted Boltzmann Machines Using No-Boundary Jellyfishen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-0594-3764[1]
unesp.author.orcid0000-0002-6442-8343[2]
unesp.author.orcid0000-0001-5458-3908[3]
unesp.author.orcid0000-0002-0370-1211[4]
unesp.author.orcid0000-0002-6494-7514[5]

Arquivos

Coleções