Publicação:
Stroke Lesion Detection Using Convolutional Neural Networks

Nenhuma Miniatura disponível

Data

2018-10-10

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Stroke is an injury that affects the brain tissue, mainly caused by changes in the blood supply to a particular region of the brain. As consequence, some specific functions related to that affected region can be reduced, decreasing the quality of life of the patient. In this work, we deal with the problem of stroke detection in Computed Tomography (CT) images using Convolutional Neural Networks (CNN) optimized by Particle Swarm optimization (PSO). We considered two different kinds of strokes, ischemic and hemorrhagic, as well as making available a public dataset to foster the research related to stroke detection in the human brain. The dataset comprises three different types of images for each case, i.e., the original CT image, one with the segmented cranium and an additional one with the radiological density's map. The results evidenced that CNN's are suitable to deal with stroke detection, obtaining promising results.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação