Soil structure changes induced by tillage systems
Carregando...
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso aberto

Fontes externas
Fontes externas
Resumo
Structure represents one of the main soil physical attributes indicators. The soil porous system (SPS) is directly linked to the soil structure. Water retention, movement, root development, gas diffusion and the conditions for all soil biota are related to the SPS. Studies, about the influence of tillage systems in the soil structure are important to evaluate their impact in the soil quality. This paper deals with a detailed analysis of changes in the soil structure induced by conventional (CT) and no-tillage (NT) systems. Three different soil depths were studied (0-10, 10-20 and 20-30 cm). Data of the soil water retention curve (SWRC), micromorphologic (impregnated blocks) (2D) and microtomographic (mu CT) (3D) analyses were utilized to characterize the SPS. Such analyses enabled the investigation of porous system attributes such as: porosity, pore number and shape, pore size distribution, tortuosity and connectivity: Results from this study show a tri-modal pore size distribution (PSD) at depths 0-10 and 10-20 cm for the soil under CT and a bi-modal PSD for the lower layer (20-30 cm). Regarding the soil under NT, tri-modal PSD5 were found at the three depths analyzed. Results based on the micromorphologic analysis (2D) showed that the greatest contribution to areal porosity (AP) is given by pores of round (R) shape for CT (52%: 0-10 cm; 50%: 10-20 cm; 67%: 20-30 cm). Contrary to the results observed for CT, the soil under NT system gave the greatest contribution to AP, for the upper (0-10 cm) and intermediate (10-20 cm) layers, due to the large complex (C) pore types. For the mu CT analysis, several types of pores were identified for each soil tillage system. Small-differences in the macroporosity (MAP) were observed for the 0-10 and 20-30 cm between Cl' and NT. A better pore connectivity was found for the 0-10 cm layer under NT. (C) 2016 Elsevier B.V. All rights reserved.
Descrição
Palavras-chave
Soil porous system, Microtomography, Soil water retention curve
Idioma
Inglês
Citação
Soil & Tillage Research. Amsterdam: Elsevier Science Bv, v. 165, p. 66-79, 2017.





