Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Enhancing anomaly detection through restricted Boltzmann machine features projection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Technology has been nurturing a wide range of applications in the past decades, assisting humans in automating some of their daily tasks. Nevertheless, more advanced technology systems also expose some potential flaws, which encourage malicious users to explore and break their security. Researchers attempted to overcome such problems by fostering intrusion detection systems, which are security layers that try to detect mischievous attempts. Apart from that, increasing demand for machine learning also enabled the possibility of combining such approaches in order to provide more robust detection systems. In this context, we introduce a novel approach to deal with anomaly detection, where instead of using the problem’s raw features, we project them through a restricted Boltzmann machine. The intended approach was assessed under a well-known literature anomaly detection dataset and achieved suitable results, better than some state-of-the-art approaches.

Descrição

Palavras-chave

Anomaly detection, Intrusion detection system, Machine learning, Restricted Boltzmann machine

Idioma

Inglês

Citação

International Journal of Information Technology (Singapore), v. 13, n. 1, p. 49-57, 2021.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso