Logotipo do repositório
 

Publicação:
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

dc.contributor.authorLowe, Rachel
dc.contributor.authorCoelho, Caio As
dc.contributor.authorBarcellos, Christovam
dc.contributor.authorCarvalho, Marilia Sá
dc.contributor.authorCatão, Rafael De Castro [UNESP]
dc.contributor.authorCoelho, Giovanini E.
dc.contributor.authorRamalho, Walter Massa
dc.contributor.authorBailey, Trevor C.
dc.contributor.authorStephenson, David B.
dc.contributor.authorRodó, Xavier
dc.contributor.institutionInstitut Català de Ciències del Clima
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais
dc.contributor.institutionFundaão Oswaldo Cruz
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionMinistério da Saúde
dc.contributor.institutionUniversidade de Brasília (UnB)
dc.contributor.institutionUniversity of Exeter
dc.contributor.institutionInstitució Catalana de Recerca i Estudis Avançats
dc.date.accessioned2022-04-28T19:03:04Z
dc.date.available2022-04-28T19:03:04Z
dc.date.issued2016-02-24
dc.description.abstractRecently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.en
dc.description.affiliationClimate Dynamics and Impacts Unit Institut Català de Ciències del Clima
dc.description.affiliationCentro de Previsãode Tempoe Estudos Climáticos Instituto Nacional de Pesquisas Espaciais
dc.description.affiliationFundaão Oswaldo Cruz
dc.description.affiliationUniversidade Estadual Paulista
dc.description.affiliationMinistério da Saúde
dc.description.affiliationUniversidade de Brasília
dc.description.affiliationExeter Climate Systems College of Engineering Mathematics and Physical Sciences University of Exeter
dc.description.affiliationInstitució Catalana de Recerca i Estudis Avançats
dc.description.affiliationUnespUniversidade Estadual Paulista
dc.identifierhttp://dx.doi.org/10.7554/eLife.11285
dc.identifier.citationeLife, v. 5, n. FEBRUARY2016, 2016.
dc.identifier.doi10.7554/eLife.11285
dc.identifier.issn2050-084X
dc.identifier.scopus2-s2.0-84961267144
dc.identifier.urihttp://hdl.handle.net/11449/220588
dc.language.isoeng
dc.relation.ispartofeLife
dc.sourceScopus
dc.titleEvaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazilen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-3939-7343[1]
unesp.author.orcid0000-0002-1161-2753[3]

Arquivos

Coleções