Publicação: COINCIDENCE OF MAPS ON TORUS FIBRE BUNDLES OVER THE CIRCLE
dc.contributor.author | Vieira, Joao Peres [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T16:19:23Z | |
dc.date.available | 2018-11-26T16:19:23Z | |
dc.date.issued | 2015-12-01 | |
dc.description.abstract | The main purpose of this work is to study coincidences of fibre preserving self-maps over the circle S-1 for spaces which are fibre bundles over S' and the fibre is the torus T. We classify all pairs of self-maps over S-1 which can be deformed fibrewise to a pair of coincidence free maps. | en |
dc.description.affiliation | UNESP Univ Estadual Paulista, Dept Matemat, Inst Geociencias & Ciencias Exatas, Rio Claro, Brazil | |
dc.description.affiliationUnesp | UNESP Univ Estadual Paulista, Dept Matemat, Inst Geociencias & Ciencias Exatas, Rio Claro, Brazil | |
dc.format.extent | 507-548 | |
dc.identifier.citation | Topological Methods In Nonlinear Analysis. Torun: Juliusz Schauder Ctr Nonlinear Studies, v. 46, n. 2, p. 507-548, 2015. | |
dc.identifier.file | WOS000368961400001.pdf | |
dc.identifier.issn | 1230-3429 | |
dc.identifier.uri | http://hdl.handle.net/11449/161165 | |
dc.identifier.wos | WOS:000368961400001 | |
dc.language.iso | eng | |
dc.publisher | Juliusz Schauder Ctr Nonlinear Studies | |
dc.relation.ispartof | Topological Methods In Nonlinear Analysis | |
dc.relation.ispartofsjr | 0,710 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Coincidence | |
dc.subject | fibre bundle | |
dc.subject | fibrewise homotopy | |
dc.title | COINCIDENCE OF MAPS ON TORUS FIBRE BUNDLES OVER THE CIRCLE | en |
dc.type | Artigo | |
dcterms.rightsHolder | Juliusz Schauder Ctr Nonlinear Studies | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Matemática - IGCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000368961400001.pdf
- Tamanho:
- 474.73 KB
- Formato:
- Adobe Portable Document Format
- Descrição: