Publicação: Orthogonal polynomials on the unit circle satisfying a second-order differential equation with varying polynomial coefficients
dc.contributor.author | Borrego-Morell, J. | |
dc.contributor.author | Ranga, A. Sri [UNESP] | |
dc.contributor.institution | Universidade Federal do Rio de Janeiro (UFRJ) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:12:11Z | |
dc.date.available | 2018-11-26T17:12:11Z | |
dc.date.issued | 2016-01-01 | |
dc.description.abstract | Consider the linear second-order differential equation An(z) y+ B-n(z) y' + C(n)y = 0, where A(n)(z) = a(2), nz(2) + a(1,n)z + a(0), n with a(2), n = 0, a2 1, n - 4a2, na0, n = 0,. n. N or a2, n = 0, a1, n = 0,. n. N, Bn(z) = b1, n + b0, nz are polynomials with complex coefficients and Cn. C. Under some assumptions over a certain class of lowering and raising operators, we show that for a sequence of polynomials (fn)8 n = 0 orthogonal on the unit circle to satisfy the differential equation (1.1), the polynomial fn must be of a specific form involving and extension of the Gauss and confluent hypergeometric series. | en |
dc.description.affiliation | Univ Fed Rio de Janeiro, Dept Matemat, Rio De Janeiro, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Dept Matemat Aplicada, Campus Sao Jose Rio Preto, Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Matemat Aplicada, Campus Sao Jose Rio Preto, Sao Paulo, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2012/21042-0 | |
dc.description.sponsorshipId | CNPq: 305073/2014-1 | |
dc.description.sponsorshipId | FAPESP: 2009/13832-9 | |
dc.format.extent | 39-55 | |
dc.identifier | http://dx.doi.org/10.1080/10652469.2016.1249866 | |
dc.identifier.citation | Integral Transforms And Special Functions. Abingdon: Taylor & Francis Ltd, v. 28, n. 1, p. 39-55, 2016. | |
dc.identifier.doi | 10.1080/10652469.2016.1249866 | |
dc.identifier.file | WOS000388742900004.pdf | |
dc.identifier.issn | 1065-2469 | |
dc.identifier.uri | http://hdl.handle.net/11449/162190 | |
dc.identifier.wos | WOS:000388742900004 | |
dc.language.iso | eng | |
dc.publisher | Taylor & Francis Ltd | |
dc.relation.ispartof | Integral Transforms And Special Functions | |
dc.relation.ispartofsjr | 0,819 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Orthogonal polynomials on the unit circle | |
dc.subject | differential equations | |
dc.subject | special functions | |
dc.subject | complex analysis | |
dc.title | Orthogonal polynomials on the unit circle satisfying a second-order differential equation with varying polynomial coefficients | en |
dc.type | Artigo | |
dcterms.license | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
dcterms.rightsHolder | Taylor & Francis Ltd | |
dspace.entity.type | Publication | |
unesp.author.lattes | 3587123309745610[2] | |
unesp.author.orcid | 0000-0002-5124-8423[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática Aplicada - IBILCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000388742900004.pdf
- Tamanho:
- 1.37 MB
- Formato:
- Adobe Portable Document Format
- Descrição: