Quaternion-Based Backtracking Search Optimization Algorithm
| dc.contributor.author | Passos, Leandro Aparecido | |
| dc.contributor.author | Rodrigues, Douglas | |
| dc.contributor.author | Papa, Joao Paulo [UNESP] | |
| dc.contributor.author | IEEE | |
| dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.date.accessioned | 2020-12-11T04:54:41Z | |
| dc.date.available | 2020-12-11T04:54:41Z | |
| dc.date.issued | 2019-01-01 | |
| dc.description.abstract | Fitness landscape has been one of the main limitations regarding optimization tasks. Although meta-heuristic techniques have achieved outstanding results over a large variety of problems, some issues related to the function geometry and the risk to get trapped from local optima are issues that still require attention. To deal with this problem, we propose the Quaternion-based Backtracking Search Optimization Algorithm, a variant of the standard Backtracking Search Optimization Algorithm that maps each decision variable in a tensor onto a hypercomplex search space, whose landscape is expected to be smoother. Experiments conducted using nine benchmarking functions showed considerably better results than the ones achieved over standard search spaces, as well as more accurate results than some quaternion-based methods as well. | en |
| dc.description.affiliation | UFSCar Fed Univ Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil | |
| dc.description.affiliation | UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil | |
| dc.description.affiliationUnesp | UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | CAPES: 001 | |
| dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
| dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
| dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
| dc.description.sponsorshipId | FAPESP: 2016/06441-7 | |
| dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
| dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
| dc.format.extent | 3014-3021 | |
| dc.identifier.citation | 2019 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, p. 3014-3021, 2019. | |
| dc.identifier.uri | http://hdl.handle.net/11449/197587 | |
| dc.identifier.wos | WOS:000502087103005 | |
| dc.language.iso | eng | |
| dc.publisher | Ieee | |
| dc.relation.ispartof | 2019 Ieee Congress On Evolutionary Computation (cec) | |
| dc.source | Web of Science | |
| dc.subject | Backtracking Search Optimization Algorithm | |
| dc.subject | Quaternions | |
| dc.subject | Meta-heuristics | |
| dc.title | Quaternion-Based Backtracking Search Optimization Algorithm | en |
| dc.type | Trabalho apresentado em evento | pt |
| dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
| dcterms.rightsHolder | Ieee | |
| dspace.entity.type | Publication | |
| relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
| unesp.department | Computação - FC | pt |
