Publicação:
Tolerance of an acute warming challenge declines with body mass in Nile tilapia: evidence of a link to capacity for oxygen uptake

dc.contributor.authorBlasco, Felipe R. [UNESP]
dc.contributor.authorTaylor, Edwin W.
dc.contributor.authorLeite, Cleo A C
dc.contributor.authorMonteiro, Diana A.
dc.contributor.authorRantin, F Tadeu
dc.contributor.authorMcKenzie, David J.
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Birmingham
dc.contributor.institutionIRD
dc.date.accessioned2023-03-01T21:10:48Z
dc.date.available2023-03-01T21:10:48Z
dc.date.issued2022-08-15
dc.description.abstractIt has been proposed that larger individuals within fish species may be more sensitive to global warming, as a result of limitations in their capacity to provide oxygen for aerobic metabolic activities. This could affect size distributions of populations in a warmer world but evidence is lacking. In Nile tilapia Oreochromis niloticus (n=18, mass range 21-313 g), capacity to provide oxygen for aerobic activities (aerobic scope) was independent of mass at an acclimation temperature of 26°C. Tolerance of acute warming, however, declined significantly with mass when evaluated as the critical temperature for fatigue from aerobic swimming (CTSmax). The CTSmax protocol challenges a fish to meet the oxygen demands of constant aerobic exercise while their demands for basal metabolism are accelerated by incremental warming, culminating in fatigue. CTSmax elicited pronounced increases in oxygen uptake in the tilapia but the maximum rates achieved prior to fatigue declined very significantly with mass. Mass-related variation in CTSmax and maximum oxygen uptake rates were positively correlated, which may indicate a causal relationship. When fish populations are faced with acute thermal stress, larger individuals may become constrained in their ability to perform aerobic activities at lower temperatures than smaller conspecifics. This could affect survival and fitness of larger fish in a future world with more frequent and extreme heatwaves, with consequences for population productivity.en
dc.description.affiliationDepartment of Physiological Sciences Federal University of São Carlos
dc.description.affiliationJoint Graduate Program in Physiological Sciences Federal University of São Carlos - UFSCar/São Paulo State University UNESP Campus Araraquara
dc.description.affiliationSchool of Biosciences University of Birmingham, Edgbaston
dc.description.affiliationMARBEC Université Montpellier CNRS Ifremer IRD
dc.description.affiliationUnespJoint Graduate Program in Physiological Sciences Federal University of São Carlos - UFSCar/São Paulo State University UNESP Campus Araraquara
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCAPES: Finance Code 001
dc.identifierhttp://dx.doi.org/10.1242/jeb.244287
dc.identifier.citationThe Journal of experimental biology, v. 225, n. 16, 2022.
dc.identifier.doi10.1242/jeb.244287
dc.identifier.issn1477-9145
dc.identifier.scopus2-s2.0-85136910906
dc.identifier.urihttp://hdl.handle.net/11449/241571
dc.language.isoeng
dc.relation.ispartofThe Journal of experimental biology
dc.sourceScopus
dc.subjectExercise performance
dc.subjectRespiratory metabolism
dc.subjectThermal tolerance
dc.titleTolerance of an acute warming challenge declines with body mass in Nile tilapia: evidence of a link to capacity for oxygen uptakeen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-3186-5950 0000-0002-3186-5950[1]
unesp.author.orcid0000-0002-7998-9725 0000-0002-7998-9725[2]
unesp.author.orcid0000-0002-5648-5903[3]
unesp.author.orcid0000-0002-1178-6673[4]
unesp.author.orcid0000-0002-3697-278X[5]
unesp.author.orcid0000-0003-0961-9101 0000-0003-0961-9101[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araraquarapt
unesp.departmentFisiologia e Patologia - FOARpt

Arquivos