Publicação: Individual tree detection and classification with UAV-Based photogrammetric point clouds and hyperspectral imaging
dc.contributor.author | Nevalainen, Olli | |
dc.contributor.author | Honkavaara, Eija | |
dc.contributor.author | Tuominen, Sakari | |
dc.contributor.author | Viljanen, Niko | |
dc.contributor.author | Hakala, Teemu | |
dc.contributor.author | Yu, Xiaowei | |
dc.contributor.author | Hyyppä, Juha | |
dc.contributor.author | Saari, Heikki | |
dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Imai, Nilton N. [UNESP] | |
dc.contributor.author | Tommaselli, Antonio M.G. [UNESP] | |
dc.contributor.institution | National Land Survey of Finland | |
dc.contributor.institution | Natural Resources Institute Finland | |
dc.contributor.institution | VTT Microelectronics | |
dc.contributor.institution | University of Jyväskylä | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:11:58Z | |
dc.date.available | 2018-12-11T17:11:58Z | |
dc.date.issued | 2017-03-01 | |
dc.description.abstract | Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees representing various tree species and developmental stages were collected in June 2014 using a UAV remote sensing system equipped with a frame format hyperspectral camera and an RGB camera in highly variable weather conditions. Dense point clouds were measured photogrammetrically by automatic image matching using high resolution RGB images with a 5 cm point interval. Spectral features were obtained from the hyperspectral image blocks, the large radiometric variation of which was compensated for by using a novel approach based on radiometric block adjustment with the support of in-flight irradiance observations. Spectral and 3D point cloud features were used in the classification experiment with various classifiers. The best results were obtained with Random Forest and Multilayer Perceptron (MLP) which both gave 95% overall accuracies and an F-score of 0.93. Accuracy of individual tree identification from the photogrammetric point clouds varied between 40% and 95%, depending on the characteristics of the area. Challenges in reference measurements might also have reduced these numbers. Results were promising, indicating that hyperspectral 3D remote sensing was operational from a UAV platform even in very difficult conditions. These novel methods are expected to provide a powerful tool for automating various environmental close-range remote sensing tasks in the very near future. | en |
dc.description.affiliation | Finnish Geospatial Research Insititute National Land Survey of Finland, Geodeetinrinne 2 | |
dc.description.affiliation | Natural Resources Institute Finland | |
dc.description.affiliation | VTT Microelectronics, P.O. Box 1000 | |
dc.description.affiliation | Department of Mathematical Information Tech University of Jyväskylä, P.O. Box 35 | |
dc.description.affiliation | Department of Cartography Univ. Estadual Paulista (UNESP) | |
dc.description.affiliationUnesp | Department of Cartography Univ. Estadual Paulista (UNESP) | |
dc.description.sponsorship | Suomen Akatemia | |
dc.description.sponsorshipId | Suomen Akatemia: 273806 | |
dc.identifier | http://dx.doi.org/10.3390/rs9030185 | |
dc.identifier.citation | Remote Sensing, v. 9, n. 3, 2017. | |
dc.identifier.doi | 10.3390/rs9030185 | |
dc.identifier.file | 2-s2.0-85019363955.pdf | |
dc.identifier.issn | 2072-4292 | |
dc.identifier.scopus | 2-s2.0-85019363955 | |
dc.identifier.uri | http://hdl.handle.net/11449/174586 | |
dc.language.iso | eng | |
dc.relation.ispartof | Remote Sensing | |
dc.relation.ispartofsjr | 1,386 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Classification | |
dc.subject | Forest | |
dc.subject | Hyperspectral | |
dc.subject | Photogrammetry | |
dc.subject | Point cloud | |
dc.subject | Radiometry | |
dc.subject | UAV | |
dc.title | Individual tree detection and classification with UAV-Based photogrammetric point clouds and hyperspectral imaging | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 5493428631948910[11] | |
unesp.author.orcid | 0000-0003-0483-1103[11] | |
unesp.department | Cartografia - FCT | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-85019363955.pdf
- Tamanho:
- 10.95 MB
- Formato:
- Adobe Portable Document Format
- Descrição: