Logotipo do repositório
 

Publicação:
Fluctuating commutative geometry

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

World Scientific Publ Co Pte Ltd

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

We use the framework of noncommutative geometry to define a discrete model for fluctuating geometry. Instead of considering ordinary geometry and its metric fluctuations, we consider generalized geometries where topology and dimension can also fluctuate. The model describes the geometry of spaces with a countable number n of points. The spectral principle of Connes and Chamseddine is used to define dynamics. We show that this simple model has two phases. The expectation value <n>, the average number of points in the universe, is finite in one phase and diverges in the other. Moreover, the dimension delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of <delta> is discussed and an upper bound is found, <delta> < 2. We also address another discrete model defined on a fixed d = 1 dimension, where topology fluctuates. We comment on a possible spontaneous localization of topology.

Descrição

Palavras-chave

quantum gravity, noncommutative geometry, random matrix theory

Idioma

Inglês

Como citar

Modern Physics Letters A. Singapore: World Scientific Publ Co Pte Ltd, v. 18, n. 33-35, p. 2517-2524, 2003.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação