Logotipo do repositório
 

Publicação:
Characteristic Times for the Fermi-Ulam Model

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The mean Poincaré recurrence time as well as the Lyapunov time are measured for the Fermi-Ulam model. It is confirmed that the mean recurrence time is dependent on the size of the window chosen in the phase space where particles are allowed to return. The fractal dimension of the region is determined by the slope of the recurrence time against the size of the window and two numerical values are measured: (i) μ = 1 confirming normal diffusion for chaotic regions far from periodic domains and (ii) μ = 2 leading to anomalous diffusion measured inside islands of stability and invariant curves corresponding to regular orbits, a signature of local trapping of an ensemble of particles. The Lyapunov time is the inverse of the Lyapunov exponent. Therefore, the Lyapunov time is measured over different domains in the phase space through a direct determination of the Lyapunov exponent.

Descrição

Palavras-chave

Chaos, diffusion, Poincaré recurrence

Idioma

Inglês

Como citar

International Journal of Bifurcation and Chaos, v. 31, n. 2, 2021.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação