Publicação: Bifurcation of Equilibria for One-dimensional Semilinear Equation of the Thermoelasticity
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In this paper, we study the bifurcation problem for the system [formula omitted] with Dirichlet boundary conditions u = θ = 0 at x = 0,π. Here, A is a nonnegative real parameter, m, k are C1functions, k is positive and m is not identically zero. The function g will be required to be C3and satisfying a dissipative condition. We show that if n2 < λ < (n + 1)2, for some integer n ≥ 0, then the global attractor Aλ for this system has some similar qualitative properties as the attractor of the parabolic equation ut= uxx — λg(u) with Dirichlet boundary conditions. © 1994, Taylor & Francis Group, LLC. All rights reserved.
Descrição
Palavras-chave
attractor, bifurcation, thermoelasticity
Idioma
Inglês
Como citar
Applicable Analysis, v. 54, n. 3-4, p. 225-236, 1994.