Atenção!


Informamos que o Repositório Institucional passará por atualização no dia 15/01/2026 e ficará fora do ar entre 10:00 e 14:00 horas.

Pedimos a sua compreensão

Logo do repositório

Lithological Classification of Brazilian Pre-salt Rocks with GLCM Features and Machine Learning

dc.contributor.authorRoder, M.
dc.contributor.authorPereira, C. [UNESP]
dc.contributor.authorPapa, J. [UNESP]
dc.contributor.authorJunior, A.
dc.contributor.authorDe Rezende, M.
dc.contributor.authorSilva, Y.
dc.contributor.authorVidal, A.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPetrobras
dc.date.accessioned2025-04-29T20:04:10Z
dc.date.issued2024-01-01
dc.description.abstractLithological classification represents a method applied to discern and interpret unique rock structures, offering crucial insights into their petrophysical, morphological, textural, and geological characteristics. This process holds particular significance in the carbonate sedimentary rocks within petroleum basins due to their substantial capacity to store natural gas and oil, forming an intrinsic correlation with oil reservoir productivity. We introduce an automated framework for the lithological classification of specific carbonate rocks, categorizing them into seven distinct classes. The approach involves a comparative analysis of two established machine learning algorithms and a conventional feature extractor. Through experiments conducted on a proprietary dataset from a Brazilian petroleum company, the results indicate that Random Forests combined with GLCM exhibit promising potential for this classification task.en
dc.description.affiliationUnicamp
dc.description.affiliationUNESP
dc.description.affiliationPetrobras
dc.description.affiliationUnespUNESP
dc.description.sponsorshipPetrobras
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCritical Ecosystem Partnership Fund
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2019/07665-4
dc.description.sponsorshipIdFAPESP: 2023/14427-8
dc.description.sponsorshipIdCNPq: 308529/2021-9
dc.description.sponsorshipIdCritical Ecosystem Partnership Fund: 74999-23
dc.identifierhttp://dx.doi.org/10.3997/2214-4609.202439051
dc.identifier.citation4th EAGE Digitalization Conference and Exhibition.
dc.identifier.doi10.3997/2214-4609.202439051
dc.identifier.scopus2-s2.0-85217620830
dc.identifier.urihttps://hdl.handle.net/11449/305777
dc.language.isoeng
dc.relation.ispartof4th EAGE Digitalization Conference and Exhibition
dc.sourceScopus
dc.titleLithological Classification of Brazilian Pre-salt Rocks with GLCM Features and Machine Learningen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções