Publicação: XGBoost Applied to Identify Malicious Domains Using Passive DNS
Nenhuma Miniatura disponível
Data
2020-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Ieee
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
The Domain Name System (DNS) is an essential component for the Internet, as its main function is to map the domain name to Internet Protocol addresses, in which the hosts respond. Because of its importance, attackers use this tool for malicious purposes such as spreading malware, botnets, fast-flux domains, and Domain Generation Algorithms (DGAs). In this paper, we present an approach to automatically detect malicious domains using passive DNS, using the supervised machine learning algorithm Extreme Gradient Boosting (XGBoost). We use 12 features extracted exclusively from DNS traffic. The model's evaluation proved its effectiveness with an average AUC of 0.9763.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 4 p., 2020.