Publicação:
XGBoost Applied to Identify Malicious Domains Using Passive DNS

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The Domain Name System (DNS) is an essential component for the Internet, as its main function is to map the domain name to Internet Protocol addresses, in which the hosts respond. Because of its importance, attackers use this tool for malicious purposes such as spreading malware, botnets, fast-flux domains, and Domain Generation Algorithms (DGAs). In this paper, we present an approach to automatically detect malicious domains using passive DNS, using the supervised machine learning algorithm Extreme Gradient Boosting (XGBoost). We use 12 features extracted exclusively from DNS traffic. The model's evaluation proved its effectiveness with an average AUC of 0.9763.

Descrição

Idioma

Inglês

Como citar

2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 4 p., 2020.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação