Publicação: XGBoost Applied to Identify Malicious Domains Using Passive DNS
dc.contributor.author | Silveira, Marcos Rogerio [UNESP] | |
dc.contributor.author | Silva, Leandro Marcos da [UNESP] | |
dc.contributor.author | Cansian, Adriano Mauro [UNESP] | |
dc.contributor.author | Kobayashi, Hugo Koji | |
dc.contributor.author | GkoulalasDivanis, A. | |
dc.contributor.author | Marchetti, M. | |
dc.contributor.author | Avresky, D. R. | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Brazilian Network Informat Ctr NICBR | |
dc.date.accessioned | 2022-04-28T17:30:19Z | |
dc.date.available | 2022-04-28T17:30:19Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | The Domain Name System (DNS) is an essential component for the Internet, as its main function is to map the domain name to Internet Protocol addresses, in which the hosts respond. Because of its importance, attackers use this tool for malicious purposes such as spreading malware, botnets, fast-flux domains, and Domain Generation Algorithms (DGAs). In this paper, we present an approach to automatically detect malicious domains using passive DNS, using the supervised machine learning algorithm Extreme Gradient Boosting (XGBoost). We use 12 features extracted exclusively from DNS traffic. The model's evaluation proved its effectiveness with an average AUC of 0.9763. | en |
dc.description.affiliation | Univ Estadual Paulista UNESP, Sao Paulo, Brazil | |
dc.description.affiliation | Brazilian Network Informat Ctr NICBR, Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista UNESP, Sao Paulo, Brazil | |
dc.description.sponsorship | Fundação para o Desenvolvimento da UNESP (FUNDUNESP) | |
dc.description.sponsorshipId | FUNDUNESP: 2764/2018 | |
dc.format.extent | 4 | |
dc.identifier.citation | 2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 4 p., 2020. | |
dc.identifier.issn | 2643-7910 | |
dc.identifier.uri | http://hdl.handle.net/11449/218874 | |
dc.identifier.wos | WOS:000661912700045 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2020 Ieee 19th International Symposium On Network Computing And Applications (nca) | |
dc.source | Web of Science | |
dc.subject | Domain Name System | |
dc.subject | malicious domain | |
dc.subject | passive DNS | |
dc.subject | machine learning | |
dc.title | XGBoost Applied to Identify Malicious Domains Using Passive DNS | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Engenharia Mecânica - FEB | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |