Publicação:
XGBoost Applied to Identify Malicious Domains Using Passive DNS

dc.contributor.authorSilveira, Marcos Rogerio [UNESP]
dc.contributor.authorSilva, Leandro Marcos da [UNESP]
dc.contributor.authorCansian, Adriano Mauro [UNESP]
dc.contributor.authorKobayashi, Hugo Koji
dc.contributor.authorGkoulalasDivanis, A.
dc.contributor.authorMarchetti, M.
dc.contributor.authorAvresky, D. R.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionBrazilian Network Informat Ctr NICBR
dc.date.accessioned2022-04-28T17:30:19Z
dc.date.available2022-04-28T17:30:19Z
dc.date.issued2020-01-01
dc.description.abstractThe Domain Name System (DNS) is an essential component for the Internet, as its main function is to map the domain name to Internet Protocol addresses, in which the hosts respond. Because of its importance, attackers use this tool for malicious purposes such as spreading malware, botnets, fast-flux domains, and Domain Generation Algorithms (DGAs). In this paper, we present an approach to automatically detect malicious domains using passive DNS, using the supervised machine learning algorithm Extreme Gradient Boosting (XGBoost). We use 12 features extracted exclusively from DNS traffic. The model's evaluation proved its effectiveness with an average AUC of 0.9763.en
dc.description.affiliationUniv Estadual Paulista UNESP, Sao Paulo, Brazil
dc.description.affiliationBrazilian Network Informat Ctr NICBR, Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Sao Paulo, Brazil
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipIdFUNDUNESP: 2764/2018
dc.format.extent4
dc.identifier.citation2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 4 p., 2020.
dc.identifier.issn2643-7910
dc.identifier.urihttp://hdl.handle.net/11449/218874
dc.identifier.wosWOS:000661912700045
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2020 Ieee 19th International Symposium On Network Computing And Applications (nca)
dc.sourceWeb of Science
dc.subjectDomain Name System
dc.subjectmalicious domain
dc.subjectpassive DNS
dc.subjectmachine learning
dc.titleXGBoost Applied to Identify Malicious Domains Using Passive DNSen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentEngenharia Mecânica - FEBpt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos