RIVER SEDIMENT YIELD CLASSIFICATION USING REMOTE SENSING IMAGERY
| dc.contributor.author | Pisani, R. | |
| dc.contributor.author | Costa, K. [UNESP] | |
| dc.contributor.author | Rosa, G. [UNESP] | |
| dc.contributor.author | Pereira, D. [UNESP] | |
| dc.contributor.author | Papa, J. [UNESP] | |
| dc.contributor.author | Tavares, J. M. R. S. | |
| dc.contributor.author | IEEE | |
| dc.contributor.institution | Univ Fed Alfenas | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.contributor.institution | Univ Porto | |
| dc.date.accessioned | 2018-11-26T15:44:17Z | |
| dc.date.available | 2018-11-26T15:44:17Z | |
| dc.date.issued | 2016-01-01 | |
| dc.description.abstract | The monitoring of water quality is essencial to the mankind, since we strongly depend on such resource for living and working. The presence of sediments in rivers usually indicates changes in the land use, which can affect the quality of water and the lifetime of hydroelectric power plants. In countries like Brazil, where more than 70% of the energy comes from the water, it is crucial to keep monitoring the sediment yield in rivers and lakes. In this work, we evaluate some state-of- the-art supervised pattern recognition techniques to classify different levels of sediments in Brazilian rivers using satellite images, as well as we make available an annotated dataset composed of two images to foster the related research. | en |
| dc.description.affiliation | Univ Fed Alfenas, Nat Sci Inst, Alfenas, MG, Brazil | |
| dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Sao Paulo, SP, Brazil | |
| dc.description.affiliation | Univ Porto, Fac Engn, Oporto, Portugal | |
| dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Sao Paulo, SP, Brazil | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorship | SciTech - Science and Technology for Competitive and Sustainable Industries | |
| dc.description.sponsorship | Programa Operacional Regional do Norte (NORTE), through Fundo Europeu de Desenvolvimento Regional (FEDER) | |
| dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
| dc.description.sponsorshipId | FAPESP: 2015/25739-4 | |
| dc.description.sponsorshipId | FAPESP: 2015/00801-9 | |
| dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
| dc.description.sponsorshipId | SciTech - Science and Technology for Competitive and Sustainable Industries: NORTE-01-0145-FEDER-000022 | |
| dc.format.extent | 6 | |
| dc.identifier.citation | 2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016. | |
| dc.identifier.issn | 2377-0198 | |
| dc.identifier.uri | http://hdl.handle.net/11449/159557 | |
| dc.identifier.wos | WOS:000402041100003 | |
| dc.language.iso | eng | |
| dc.publisher | Ieee | |
| dc.relation.ispartof | 2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs) | |
| dc.rights.accessRights | Acesso aberto | |
| dc.source | Web of Science | |
| dc.subject | Sediment Yield | |
| dc.subject | Machine Learning | |
| dc.subject | Optimum-Path Forest | |
| dc.title | RIVER SEDIMENT YIELD CLASSIFICATION USING REMOTE SENSING IMAGERY | en |
| dc.type | Trabalho apresentado em evento | |
| dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
| dcterms.rightsHolder | Ieee | |
| dspace.entity.type | Publication |

