Logo do repositório

RIVER SEDIMENT YIELD CLASSIFICATION USING REMOTE SENSING IMAGERY

dc.contributor.authorPisani, R.
dc.contributor.authorCosta, K. [UNESP]
dc.contributor.authorRosa, G. [UNESP]
dc.contributor.authorPereira, D. [UNESP]
dc.contributor.authorPapa, J. [UNESP]
dc.contributor.authorTavares, J. M. R. S.
dc.contributor.authorIEEE
dc.contributor.institutionUniv Fed Alfenas
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Porto
dc.date.accessioned2018-11-26T15:44:17Z
dc.date.available2018-11-26T15:44:17Z
dc.date.issued2016-01-01
dc.description.abstractThe monitoring of water quality is essencial to the mankind, since we strongly depend on such resource for living and working. The presence of sediments in rivers usually indicates changes in the land use, which can affect the quality of water and the lifetime of hydroelectric power plants. In countries like Brazil, where more than 70% of the energy comes from the water, it is crucial to keep monitoring the sediment yield in rivers and lakes. In this work, we evaluate some state-of- the-art supervised pattern recognition techniques to classify different levels of sediments in Brazilian rivers using satellite images, as well as we make available an annotated dataset composed of two images to foster the related research.en
dc.description.affiliationUniv Fed Alfenas, Nat Sci Inst, Alfenas, MG, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Sao Paulo, SP, Brazil
dc.description.affiliationUniv Porto, Fac Engn, Oporto, Portugal
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Sao Paulo, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipSciTech - Science and Technology for Competitive and Sustainable Industries
dc.description.sponsorshipPrograma Operacional Regional do Norte (NORTE), through Fundo Europeu de Desenvolvimento Regional (FEDER)
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2015/25739-4
dc.description.sponsorshipIdFAPESP: 2015/00801-9
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdSciTech - Science and Technology for Competitive and Sustainable Industries: NORTE-01-0145-FEDER-000022
dc.format.extent6
dc.identifier.citation2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs). New York: Ieee, 6 p., 2016.
dc.identifier.issn2377-0198
dc.identifier.urihttp://hdl.handle.net/11449/159557
dc.identifier.wosWOS:000402041100003
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2016 9th Iapr Workshop On Pattern Recognition In Remote Sensing (prrs)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSediment Yield
dc.subjectMachine Learning
dc.subjectOptimum-Path Forest
dc.titleRIVER SEDIMENT YIELD CLASSIFICATION USING REMOTE SENSING IMAGERYen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication

Arquivos

Coleções