Logo do repositório

Robustness of a macroscopic computer-vision wood identification model to digital perturbations of test images

dc.contributor.authorOwens, Frank C.
dc.contributor.authorRavindran, Prabu
dc.contributor.authorCosta, Adriana
dc.contributor.authorChavesta, Manuel
dc.contributor.authorMontenegro, Rolando
dc.contributor.authorShmulsky, Rubin
dc.contributor.authorWiedenhoeft, Alex C. [UNESP]
dc.contributor.institutionMississippi State University
dc.contributor.institutionUniversity of Wisconsin
dc.contributor.institutionForest Products Laboratory
dc.contributor.institutionUniversidad Nacional Agraria La Molina
dc.contributor.institutionPurdue University
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:14:54Z
dc.date.issued2025-01-01
dc.description.abstractDistribution shift, a phenomenon in machine learning characterized by a change in input data distribution between training and testing, can reduce the predictive accuracy of deep learning models. As operator and hardware conditions at the time of training are not always consistent with those after deployment, computer vision wood identification (CVWID) models are potentially susceptible to the negative impacts of distribution shift in the field. To maximize the robustness of CVWID models, it is critical to evaluate the influence of distribution shifts on model performance. In this study, a previously published 24-class CVWID model for Peruvian timbers was evaluated on images of test specimens digitally perturbed to simulate four kinds of image variations an operator might encounter in the field including (1) red and blue color shifts to simulate sensor drift or the effects of disparate sensors; (2) resizing to simulate different magnifications that could result from using different or improperly calibrated hardware; (3) digital scratches to simulate artifacts of specimen preparation; and (4) a range of blurring effects to simulate out-of-focus images. The model was most robust to digital scratches, moderately robust to red shift and smaller areas of medium-to-severe blur, and was least robust to resizing, blue shift, and large areas of medium-to-severe blur. These findings emphasize the importance of formulating and consistently applying best practices to reduce the occurrence of distribution shift in practice and standardizing imaging hardware and protocols to ensure dataset compatibility across CVWID platforms.en
dc.description.affiliationDepartment of Sustainable Bioproducts Mississippi State University
dc.description.affiliationDepartment of Botany University of Wisconsin
dc.description.affiliationCenter for Wood Anatomy Research USDA Forest Service Forest Products Laboratory
dc.description.affiliationDepartment of Wood Industry Universidad Nacional Agraria La Molina
dc.description.affiliationDepartment of Forestry and Natural Resources Purdue University
dc.description.affiliationDepartamento de Ciências Biológicas (Botânica) Universidade Estadual Paulista - Botucatu
dc.description.affiliationUnespDepartamento de Ciências Biológicas (Botânica) Universidade Estadual Paulista - Botucatu
dc.description.sponsorshipU.S. Department of Agriculture
dc.format.extent131-146
dc.identifierhttp://dx.doi.org/10.1163/22941932-bja10167
dc.identifier.citationIAWA Journal, v. 46, n. 1, p. 131-146, 2025.
dc.identifier.doi10.1163/22941932-bja10167
dc.identifier.issn2294-1932
dc.identifier.issn0928-1541
dc.identifier.scopus2-s2.0-105001059249
dc.identifier.urihttps://hdl.handle.net/11449/309227
dc.language.isoeng
dc.relation.ispartofIAWA Journal
dc.sourceScopus
dc.subjectcomputer vision
dc.subjectdeep learning
dc.subjectdistribution shift
dc.subjectillegal logging
dc.subjectmachine learning
dc.subjectPeruvian wood identification
dc.subjectXyloTron
dc.titleRobustness of a macroscopic computer-vision wood identification model to digital perturbations of test imagesen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-5421-3269[1]
unesp.author.orcid0000-0001-7240-7713 0000-0001-7240-7713[2]
unesp.author.orcid0000-0002-8755-4609[3]
unesp.author.orcid0000-0002-5774-6159[4]
unesp.author.orcid0000-0002-7300-856X[5]
unesp.author.orcid0000-0002-7053-8565 0000-0002-7053-8565 0000-0002-7053-8565 0000-0002-7053-8565 0000-0002-7053-8565[7]

Arquivos

Coleções