Logotipo do repositório
 

Publicação:
Using Geospatial Information to Map Yield Gain from the Use of Azospirillum brasilense in Furrow

dc.contributor.authorMartins, George Deroco
dc.contributor.authorXavier, Laura Cristina Moura
dc.contributor.authorde Oliveira, Guilherme Pereira
dc.contributor.authorde Lourdes Bueno Trindade Gallo, Maria [UNESP]
dc.contributor.authorde Abreu Júnior, Carlos Alberto Matias
dc.contributor.authorVieira, Bruno Sérgio
dc.contributor.authorMarques, Douglas José
dc.contributor.authorda Silva, Filipe Vieira
dc.contributor.institutionUnversidade Federal de Uberlândia
dc.contributor.institutionLallemand Soluções Biológicas LTDA
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T13:50:33Z
dc.date.available2023-07-29T13:50:33Z
dc.date.issued2023-03-01
dc.description.abstractThe application of biological products in agricultural crops has become increasingly prominent. The growth-promoting bacterium Azospirillum brasilense has been used as an alternative to promote greater yield in maize crops. In the context of precision agriculture, interpreting geospatial data has allowed for monitoring the effect of the application of products that increase the yield of corn crops. The objective of this work was to evaluate the potential of Kriging techniques and spectral models through images in estimating the gain in yield of maize crop after applying A. brasilense. Analyses were carried out in two commercial areas treated with A. brasilense. The results revealed that models of yield prediction by Kriging with a high volume of training data estimated the yield gain with a root-mean-square error deviation (RMSE%), mean absolute percentage error (MAPE%), and R2 to be 6.67, 5.42, and 0.88, respectively. For spectral models with a low volume of training data, yield gain was estimated with RMSE%, MAPE%, and R2 to be 9.3, 7.71, and 0.80, respectively. The results demonstrate the potential to map the spatial distribution of productivity gains in corn crops following the application of A. brasilense.en
dc.description.affiliationInstutute of Geography Unversidade Federal de Uberlândia, BR-MG
dc.description.affiliationPost Graduate Program in Agriculture and Geospatial Information Institute of Agrarian Sciences Unversidade Federal de Uberlândia, BR-MG
dc.description.affiliationLallemand Soluções Biológicas LTDA, BR-MG
dc.description.affiliationCartography Departament Faculdade de Ciências e Tecnologia Universidade Estadual Paulista
dc.description.affiliationInstitute of Agrarian Sciences Unversidade Federal de Uberlândia, MG
dc.description.affiliationUnespCartography Departament Faculdade de Ciências e Tecnologia Universidade Estadual Paulista
dc.identifierhttp://dx.doi.org/10.3390/agronomy13030808
dc.identifier.citationAgronomy, v. 13, n. 3, 2023.
dc.identifier.doi10.3390/agronomy13030808
dc.identifier.issn2073-4395
dc.identifier.scopus2-s2.0-85152358383
dc.identifier.urihttp://hdl.handle.net/11449/248678
dc.language.isoeng
dc.relation.ispartofAgronomy
dc.sourceScopus
dc.subjectbiological product
dc.subjectgeospatial data analysis
dc.subjectyield gain distribution map
dc.titleUsing Geospatial Information to Map Yield Gain from the Use of Azospirillum brasilense in Furrowen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-9738-7325[1]
unesp.author.orcid0000-0002-1726-3152[4]
unesp.author.orcid0000-0001-8130-8100[6]
unesp.author.orcid0000-0002-0598-2141[7]
unesp.departmentCartografia - FCTpt

Arquivos