Skyrmionium dynamics and stability on one dimensional anisotropy patterns
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
We examine a skyrmionium driven over a periodic anisotropy pattern, which consists of disorder free regions and disordered regions. For small defect densities, the skyrmionium flows for an extended range of currents, and there is a critical current above which it transforms into a skyrmion. For increased amounts of quenched disorder, the current needed for the skyrmionium to transform into a skyrmion decreases, and there is a critical disorder density above which a moving skyrmionium is not stable. In the moving state, the skyrmionium to skyrmion transformation leads to a drop in the velocity and the onset of a finite skyrmion Hall angle. We also find a reentrance effect in which the pinned skyrmionium transforms into a skyrmion just above depinning, restabilizes into skyrmionium at larger drives, and becomes unstable again at large currents. We also show that adding a transverse shaking drive can increase the lifetime of a moving skyrmionium by reducing the effect of the pinning in the direction of the drive.
Descrição
Palavras-chave
dynamics, skyrmionium, stability
Idioma
Inglês
Citação
Journal of Physics Condensed Matter, v. 37, n. 19, 2025.





