Invariant probabilities for discrete time linear dynamics via thermodynamic formalism
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
We show the existence of invariant ergodic σ-additive probability measures with full support on X for a class of linear operators L : X → X, where L is a weighted shift operator and X either is the Banach space c0(ℝ) or lp(ℝ) for 1 p < ∞. In order to do so, we adapt ideas from thermodynamic formalism as follows. For a given bounded Hölder continuous potential A:X → R, we define a transfer operator LA which acts on continuous functions on X and prove that this operator satisfies a Ruelle-Perron-Frobenius theorem. That is, we show the existence of an eigenfunction for LA which provides us with a normalised potential A and an action of the dual operator LA∗ on the one-Wasserstein space of probabilities on X with a unique fixed point, to which we refer to as Gibbs probability. It is worth noting that the definition of LA requires an a priori probability on the kernel of L. These results are extended to a wide class of operators with a non-trivial kernel defined on separable Banach spaces.
Descrição
Palavras-chave
discrete time linear dynamics, eigenprobability, equilibrium state, Gibbs probability, lp spaces, Ruelle theorem
Idioma
Inglês
Citação
Nonlinearity, v. 34, n. 12, p. 8359-8391, 2021.




