Logotipo do repositório
 

Publicação:
Invariant probabilities for discrete time linear dynamics via thermodynamic formalism

dc.contributor.authorLopes, Artur O.
dc.contributor.authorMessaoudi, Ali [UNESP]
dc.contributor.authorStadlbauer, Manuel
dc.contributor.authorVargas, Victor
dc.contributor.institutionIME-UFRGS
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.date.accessioned2022-05-01T11:07:37Z
dc.date.available2022-05-01T11:07:37Z
dc.date.issued2021-12-01
dc.description.abstractWe show the existence of invariant ergodic σ-additive probability measures with full support on X for a class of linear operators L : X → X, where L is a weighted shift operator and X either is the Banach space c0(ℝ) or lp(ℝ) for 1 p < ∞. In order to do so, we adapt ideas from thermodynamic formalism as follows. For a given bounded Hölder continuous potential A:X → R, we define a transfer operator LA which acts on continuous functions on X and prove that this operator satisfies a Ruelle-Perron-Frobenius theorem. That is, we show the existence of an eigenfunction for LA which provides us with a normalised potential A and an action of the dual operator LA∗ on the one-Wasserstein space of probabilities on X with a unique fixed point, to which we refer to as Gibbs probability. It is worth noting that the definition of LA requires an a priori probability on the kernel of L. These results are extended to a wide class of operators with a non-trivial kernel defined on separable Banach spaces.en
dc.description.affiliationIME-UFRGS
dc.description.affiliationMAT-UNESP
dc.description.affiliationIM-UFRJ
dc.description.affiliationUnespMAT-UNESP
dc.format.extent8359-8391
dc.identifierhttp://dx.doi.org/10.1088/1361-6544/ac3382
dc.identifier.citationNonlinearity, v. 34, n. 12, p. 8359-8391, 2021.
dc.identifier.doi10.1088/1361-6544/ac3382
dc.identifier.issn1361-6544
dc.identifier.issn0951-7715
dc.identifier.scopus2-s2.0-85120637725
dc.identifier.urihttp://hdl.handle.net/11449/233873
dc.language.isoeng
dc.relation.ispartofNonlinearity
dc.sourceScopus
dc.subjectdiscrete time linear dynamics
dc.subjecteigenprobability
dc.subjectequilibrium state
dc.subjectGibbs probability
dc.subjectlp spaces
dc.subjectRuelle theorem
dc.titleInvariant probabilities for discrete time linear dynamics via thermodynamic formalismen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-2785-6576[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos