Publicação: Invariant probabilities for discrete time linear dynamics via thermodynamic formalism
dc.contributor.author | Lopes, Artur O. | |
dc.contributor.author | Messaoudi, Ali [UNESP] | |
dc.contributor.author | Stadlbauer, Manuel | |
dc.contributor.author | Vargas, Victor | |
dc.contributor.institution | IME-UFRGS | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade Federal do Rio de Janeiro (UFRJ) | |
dc.date.accessioned | 2022-05-01T11:07:37Z | |
dc.date.available | 2022-05-01T11:07:37Z | |
dc.date.issued | 2021-12-01 | |
dc.description.abstract | We show the existence of invariant ergodic σ-additive probability measures with full support on X for a class of linear operators L : X → X, where L is a weighted shift operator and X either is the Banach space c0(ℝ) or lp(ℝ) for 1 p < ∞. In order to do so, we adapt ideas from thermodynamic formalism as follows. For a given bounded Hölder continuous potential A:X → R, we define a transfer operator LA which acts on continuous functions on X and prove that this operator satisfies a Ruelle-Perron-Frobenius theorem. That is, we show the existence of an eigenfunction for LA which provides us with a normalised potential A and an action of the dual operator LA∗ on the one-Wasserstein space of probabilities on X with a unique fixed point, to which we refer to as Gibbs probability. It is worth noting that the definition of LA requires an a priori probability on the kernel of L. These results are extended to a wide class of operators with a non-trivial kernel defined on separable Banach spaces. | en |
dc.description.affiliation | IME-UFRGS | |
dc.description.affiliation | MAT-UNESP | |
dc.description.affiliation | IM-UFRJ | |
dc.description.affiliationUnesp | MAT-UNESP | |
dc.format.extent | 8359-8391 | |
dc.identifier | http://dx.doi.org/10.1088/1361-6544/ac3382 | |
dc.identifier.citation | Nonlinearity, v. 34, n. 12, p. 8359-8391, 2021. | |
dc.identifier.doi | 10.1088/1361-6544/ac3382 | |
dc.identifier.issn | 1361-6544 | |
dc.identifier.issn | 0951-7715 | |
dc.identifier.scopus | 2-s2.0-85120637725 | |
dc.identifier.uri | http://hdl.handle.net/11449/233873 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nonlinearity | |
dc.source | Scopus | |
dc.subject | discrete time linear dynamics | |
dc.subject | eigenprobability | |
dc.subject | equilibrium state | |
dc.subject | Gibbs probability | |
dc.subject | lp spaces | |
dc.subject | Ruelle theorem | |
dc.title | Invariant probabilities for discrete time linear dynamics via thermodynamic formalism | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-2785-6576[4] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |