Logo do repositório

Benchmarking diamond surface preparation and fluorination via inductively coupled plasma-reactive ion etching

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Diamond, renowned for its exceptional semiconducting properties, stands out as a promising material for high-performance power electronics, optics, quantum, and biosensing technologies. This study methodically investigates the optimization of polycrystalline diamond (PCD) substrate surfaces through Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE). Various parameters, including gaseous species, flow rate, coil power, and bias power were tuned to understand their impact on surface morphology and chemistry. A thorough characterization, encompassing chemical, spectroscopic, and microscopic methods, shed light on the effects of different ICP-RIE conditions on surface properties. CF4/O2 plasma emerged as a viable treatment for achieving smooth PCD surfaces with minimal etch pit formation. Most notably, surface fluorination, a critical aspect of increasing chemical and thermal stability, was successfully accomplished using CF4, SF6, and other F-containing plasmas. The fluorine concentration and surface chemistry variations were studied, with high resolution X-ray Photoelectron Spectroscopy unveiling differences amongst the sp2 C phase, sp3 C phase, C–O, C[dbnd]O, and C–F bonds. Time-of-flight secondary Ion Mass Spectrometry (ToF-SIMS) and depth-profile analysis unveiled a consistent surface fluorination pattern with CF4/O2 treatment. Furthermore, contact angle measurements showcased heightened hydrophobicity. This study provides valuable insights into precise diamond surface engineering, important for the development of future diamond-based semiconductor technologies.

Descrição

Palavras-chave

Contact angle, Diamond, Fluorination, Reactive ion etching, Surface morphology

Idioma

Inglês

Citação

Carbon, v. 228.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação