Logo do repositório

Advances in forensic genetics: Exploring the potential of long read sequencing

dc.contributor.authorFerreira, Marcel Rodrigues [UNESP]
dc.contributor.authorCarratto, Thássia Mayra Telles
dc.contributor.authorFrontanilla, Tamara Soledad
dc.contributor.authorBonadio, Raphael Severino
dc.contributor.authorJain, Miten
dc.contributor.authorde Oliveira, Silviene Fabiana
dc.contributor.authorCastelli, Erick C. [UNESP]
dc.contributor.authorMendes-Junior, Celso Teixeira
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade de Brasília (UnB)
dc.contributor.institutionNortheastern University
dc.date.accessioned2025-04-29T18:58:57Z
dc.date.issued2025-01-01
dc.description.abstractDNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.en
dc.description.affiliationMolecular Genetics and Bioinformatics Laboratory Experimental Research Unit - Unipex School of Medicine São Paulo State University - Unesp, São Paulo
dc.description.affiliationDepartamento de Química Laboratório de Pesquisas Forenses e Genômicas Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo, SP
dc.description.affiliationDepartamento de Genética Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, SP
dc.description.affiliationDepto Genética e Morfologia Instituto de Ciências Biológicas Universidade de Brasília, DF
dc.description.affiliationDepartment of Bioengineering Department of Physics Khoury College of Computer Sciences Northeastern University
dc.description.affiliationPathology Department School of Medicine São Paulo State University - Unesp, São Paulo
dc.description.affiliationUnespMolecular Genetics and Bioinformatics Laboratory Experimental Research Unit - Unipex School of Medicine São Paulo State University - Unesp, São Paulo
dc.description.affiliationUnespPathology Department School of Medicine São Paulo State University - Unesp, São Paulo
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Apoio à Pesquisa do Distrito Federal
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdFundação de Apoio à Pesquisa do Distrito Federal: 00193-00002596/2022-40
dc.description.sponsorshipIdCAPES: 307031/2022-5
dc.description.sponsorshipIdCAPES: 310016/2022-3
dc.description.sponsorshipIdCNPq: 408084/2023-5
dc.identifierhttp://dx.doi.org/10.1016/j.fsigen.2024.103156
dc.identifier.citationForensic Science International: Genetics, v. 74.
dc.identifier.doi10.1016/j.fsigen.2024.103156
dc.identifier.issn1878-0326
dc.identifier.issn1872-4973
dc.identifier.scopus2-s2.0-85206609494
dc.identifier.urihttps://hdl.handle.net/11449/301660
dc.language.isoeng
dc.relation.ispartofForensic Science International: Genetics
dc.sourceScopus
dc.subjectBioinformatics
dc.subjectForensic Genetics
dc.subjectMassively Parallel Sequencing
dc.subjectNext-generation sequencing
dc.subjectOxford Nanopore
dc.subjectThird-generation sequencing
dc.titleAdvances in forensic genetics: Exploring the potential of long read sequencingen
dc.typeResenhapt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa3cdb24b-db92-40d9-b3af-2eacecf9f2ba
relation.isOrgUnitOfPublication.latestForDiscoverya3cdb24b-db92-40d9-b3af-2eacecf9f2ba
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatupt

Arquivos