Logo do repositório
 

Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles

dc.contributor.authorLima, Marcio D.
dc.contributor.authorLi, Na
dc.contributor.authorde Andrade, Monica Jung
dc.contributor.authorFang, Shaoli
dc.contributor.authorOh, Jiyoung
dc.contributor.authorSpinks, Geoffrey M.
dc.contributor.authorKozlov, Mikhail E.
dc.contributor.authorHaines, Carter S.
dc.contributor.authorSuh, Dongseok
dc.contributor.authorForoughi, Javad
dc.contributor.authorKim, Seon Jeong
dc.contributor.authorChen, Yongsheng
dc.contributor.authorWare, Taylor
dc.contributor.authorShin, Min Kyoon
dc.contributor.authorMachado, Leonardo D.
dc.contributor.authorFonseca, Alexandre Fontes da [UNESP]
dc.contributor.authorMadden, John D. W.
dc.contributor.authorVoit, Walter E.
dc.contributor.authorGalvao, Douglas S.
dc.contributor.authorBaughman, Ray H.
dc.contributor.institutionUniv Texas Dallas
dc.contributor.institutionNankai Univ
dc.contributor.institutionUniv Wollongong
dc.contributor.institutionHanyang Univ
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv British Columbia
dc.date.accessioned2014-05-20T13:26:10Z
dc.date.available2014-05-20T13:26:10Z
dc.date.issued2012-11-16
dc.description.abstractArtificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.en
dc.description.affiliationUniv Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75083 USA
dc.description.affiliationNankai Univ, Coll Chem, Inst Polymer Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China
dc.description.affiliationUniv Wollongong, Intelligent Polymer Res Inst, Australian Res Council Ctr Excellence Electromat, Wollongong, NSW 2522, Australia
dc.description.affiliationHanyang Univ, Ctr Bioartificial Muscle, Seoul 133791, South Korea
dc.description.affiliationHanyang Univ, Dept Biomed Engn, Seoul 133791, South Korea
dc.description.affiliationUniv Estadual Campinas, Dept Appl Phys, BR-13081970 Campinas, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUniv British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipAir Force Office of Scientific Research
dc.description.sponsorshipOffice of Naval Research MURI
dc.description.sponsorshipRobert A. Welch Foundation
dc.description.sponsorshipCreative Research Initiative Center for Bio-Artificial Muscle
dc.description.sponsorshipKorea-U.S. Air Force Cooperation Program (Korea)
dc.description.sponsorshipAustralian Research Council (ARC)
dc.description.sponsorshipMoST
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC)
dc.description.sponsorshipIdAir Force Office of Scientific Research: FA9550-09-1-0537
dc.description.sponsorshipIdAir Force Office of Scientific Research: FA9550-12-1-0211
dc.description.sponsorshipIdOffice of Naval Research MURI: N00014-08-1-0654
dc.description.sponsorshipIdRobert A. Welch Foundation: AT-0029
dc.description.sponsorshipIdKorea-U.S. Air Force Cooperation Program (Korea): 2012-00074
dc.description.sponsorshipIdMoST: 2012CB933401
dc.description.sponsorshipIdNSFC: 50933003
dc.format.extent928-932
dc.identifierhttp://dx.doi.org/10.1126/science.1226762
dc.identifier.citationScience. Washington: Amer Assoc Advancement Science, v. 338, n. 6109, p. 928-932, 2012.
dc.identifier.doi10.1126/science.1226762
dc.identifier.issn0036-8075
dc.identifier.urihttp://hdl.handle.net/11449/8398
dc.identifier.wosWOS:000311083600038
dc.language.isoeng
dc.publisherAmer Assoc Advancement Science
dc.relation.ispartofScience
dc.relation.ispartofjcr41.058
dc.relation.ispartofsjr14,142
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.titleElectrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Musclesen
dc.typeArtigopt
dcterms.licensehttp://www.sciencemag.org/site/about/permissions.xhtml
dcterms.rightsHolderAmer Assoc Advancement Science
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentFísica - FCpt

Arquivos

Licença do pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: