Logotipo do repositório
 

Publicação:
An Ensemble-Based Stacked Sequential Learning Algorithm for Remote Sensing Imagery Classification

dc.contributor.authorPereira, Danillo R.
dc.contributor.authorPisani, Rodrigo J.
dc.contributor.authorSouza, Andre N. de [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Alfenas
dc.date.accessioned2018-11-26T17:24:26Z
dc.date.available2018-11-26T17:24:26Z
dc.date.issued2017-04-01
dc.description.abstractContextual-based image classification attempts at considering spatial/temporal information during the learning process in order to make the classification process smarter. Sequential learning techniques are one of the most used ones to perform contextual classification, being based on a two-step classification process, in which the traditional noncontextual learning process is followed by one more step of classification based on an extended feature vector. In this paper, we propose two ensemble-based approaches to make sequential learning techniques less prone to errors, since their effectiveness is strongly dependent on the feature extension process, which ends up adding the wrong predicted label of the neighborhood samples as new features. The proposed approaches are validated in the context of land-cover classification, being their results considerably better than some state-of-the-art techniques in the literature.en
dc.description.affiliationUniv West Sao Paulo, BR-19050920 Presidente Prudente, Brazil
dc.description.affiliationUniv Fed Alfenas, Inst Nat Sci, BR-37130000 Alfenas, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/20387-7
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 487032/2012-8
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent1525-1541
dc.identifierhttp://dx.doi.org/10.1109/JSTARS.2016.2645820
dc.identifier.citationIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 4, p. 1525-1541, 2017.
dc.identifier.doi10.1109/JSTARS.2016.2645820
dc.identifier.fileWOS000398948400023.pdf
dc.identifier.issn1939-1404
dc.identifier.urihttp://hdl.handle.net/11449/162682
dc.identifier.wosWOS:000398948400023
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing
dc.relation.ispartofsjr1,547
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectLand-cover classification
dc.subjectoptimum-path forest (OPF)
dc.subjectsequential learning
dc.titleAn Ensemble-Based Stacked Sequential Learning Algorithm for Remote Sensing Imagery Classificationen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.lattes8212775960494686[3]
unesp.author.orcid0000-0002-8617-5404[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000398948400023.pdf
Tamanho:
2.54 MB
Formato:
Adobe Portable Document Format
Descrição: