Publicação: Functions and vector fields on C(ℂPn)-singular manifolds
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
In this paper we study functions and vector fields with isolated singularities on a C(ℂPn)-singular manifold. In general, a C(ℂPn)-singular manifold is obtained from a smooth (2n + 1)-manifold with boundary which is a disjoint union of complex projective spaces Claro ℂPn ∪ … ∪ ℂPn and subsequent capture of the cone over each component ℂPn of the boundary. We calculate the Euler characteristic of a compact C(ℂPn)-singular manifold M2n+1 with finite isolated singular points. We also prove a version of the Poincaré-Hopf Index Theorem for an almost smooth vector field with finite number of zeros on a C(ℂPn)-singular manifold.
Descrição
Palavras-chave
Manifold, Morse number, Poincaré-hopf index, S1-invariant bott function, Semi-free circle action
Idioma
Inglês
Como citar
Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 697-715, 2015.