Logotipo do repositório
 

Publicação:
C1-Genericity of symplectic diffeomorphisms and lower bounds for topological entropy

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

There is a C1-residual (Baire second class) subset R of symplectic diffeomorphisms on 2d-dimensional manifold, d ≥ 1, such that for every non-Anosov f in R, its topological entropy is lower bounded by the supremum of the Lyapunov exponents of their hyperbolic periodic points in the unbreakable central sub-bundle (i.e. central direction with no dominated splitting) of f. The previous result deals with the fact that for f in a C1-residual set R of symplectic diffeomorphisms (containing R) satisfies a trichotomy: or f is Anosov or f is robustly transitive partially hyperbolic with unbreakable centre of dimension 2m, 0 < m < d, or f has totally elliptic periodic points dense on M. In the second case, we also show the existence of a sequence of m-elliptic periodic points converging to M. Indeed, R contains an C1 open and dense subset of symplectic diffeomorphisms.

Descrição

Palavras-chave

elliptic periodic points, generic properties, homoclinic tangency, Partially hyperbolic symplectic systems, topological entropy

Idioma

Inglês

Como citar

Dynamical Systems, v. 32, n. 4, p. 461-489, 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação