Logotipo do repositório
 

Publicação:
kappa-Entropy Based Restricted Boltzmann Machines

dc.contributor.authorPassos, Leandro Aparecido
dc.contributor.authorSantana, Marcos Cleison [UNESP]
dc.contributor.authorMoreira, Thierry [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-11T17:02:09Z
dc.date.available2020-12-11T17:02:09Z
dc.date.issued2019-01-01
dc.description.abstractRestricted Boltzmann Machines achieved notorious popularity in the scientific community in the last decade due to outstanding results in a wide range of applications and also for providing the required mechanisms to build successful deep learning models, i.e., Deep Belief Networks and Deep Boltzmann Machines. However, their main bottleneck is related to the learning step, which is usually time-consuming. In this paper, we introduce a Sigmoid-like family of functions based on the Kaniadakis entropy formulation in the context of the RBM learning procedure. Experiments concerning binary image reconstruction are conducted in four public datasets to evaluate the robustness of the proposed approach. The results suggest that such a family of functions is suitable to increase the convergence rate when compared to standard functions employed by the research community.en
dc.description.affiliationUFSCar Fed Univ Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationUNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil
dc.description.affiliationUnespUNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/06441-7
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.format.extent8
dc.identifier.citation2019 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2019.
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/197766
dc.identifier.wosWOS:000530893800033
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2019 International Joint Conference On Neural Networks (ijcnn)
dc.sourceWeb of Science
dc.subjectRestricted Boltzmann Machines
dc.subjectKaniadakis Entropy
dc.subjectMachine Learning
dc.titlekappa-Entropy Based Restricted Boltzmann Machinesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos