Publicação: kappa-Entropy Based Restricted Boltzmann Machines
dc.contributor.author | Passos, Leandro Aparecido | |
dc.contributor.author | Santana, Marcos Cleison [UNESP] | |
dc.contributor.author | Moreira, Thierry [UNESP] | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-11T17:02:09Z | |
dc.date.available | 2020-12-11T17:02:09Z | |
dc.date.issued | 2019-01-01 | |
dc.description.abstract | Restricted Boltzmann Machines achieved notorious popularity in the scientific community in the last decade due to outstanding results in a wide range of applications and also for providing the required mechanisms to build successful deep learning models, i.e., Deep Belief Networks and Deep Boltzmann Machines. However, their main bottleneck is related to the learning step, which is usually time-consuming. In this paper, we introduce a Sigmoid-like family of functions based on the Kaniadakis entropy formulation in the context of the RBM learning procedure. Experiments concerning binary image reconstruction are conducted in four public datasets to evaluate the robustness of the proposed approach. The results suggest that such a family of functions is suitable to increase the convergence rate when compared to standard functions employed by the research community. | en |
dc.description.affiliation | UFSCar Fed Univ Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil | |
dc.description.affiliation | UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil | |
dc.description.affiliationUnesp | UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | CAPES: 001 | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2016/06441-7 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.format.extent | 8 | |
dc.identifier.citation | 2019 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2019. | |
dc.identifier.issn | 2161-4393 | |
dc.identifier.uri | http://hdl.handle.net/11449/197766 | |
dc.identifier.wos | WOS:000530893800033 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2019 International Joint Conference On Neural Networks (ijcnn) | |
dc.source | Web of Science | |
dc.subject | Restricted Boltzmann Machines | |
dc.subject | Kaniadakis Entropy | |
dc.subject | Machine Learning | |
dc.title | kappa-Entropy Based Restricted Boltzmann Machines | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |