Logo do repositório

Delineation of management zones dealing with low sampling and outliers

dc.contributor.authorSilva, Cesar de Oliveira Ferreira
dc.contributor.authorGrego, Celia Regina
dc.contributor.authorManzione, Rodrigo Lilla [UNESP]
dc.contributor.authorOliveira, Stanley Robson de Medeiros
dc.contributor.authorRodrigues, Gustavo Costa
dc.contributor.authorRodrigues, Cristina Aparecida Gonçalves
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:10:55Z
dc.date.issued2025-02-01
dc.description.abstractPurpose: Management zones (MZs) are the subdivision of a field into a few contiguous homogeneous zones to guide variable-rate application. Delineating MZs can be based on geostatistical or clustering approaches, however, the joint use of these approaches is not usual. Here, we show a joint use of both techniques. The objective of this manuscript is twofold: (1) compare different procedures for creating management zones and (2) determine the relation of the MZs delineated with i) coffee yield maps and ii) the summarizing power of each method for each input variable inside the MZs delineated. Methods: The techniques compared to summary spatial data were: (1) summarizing the variables into a soil fertility index (SFI), (2) the MULTISPATI-PCA technique, and (3) the multivariate Min/Max autocorrelation factors (MAF) approach. Then, clustering methods were applied to perform field partition into binary MZs (grouping lower and higher values of input variables). Results and discussion: The MAF approach achieved the best field partition regarding clustering metrics (McNemar’s test, Silhouette Score Coefficient, and variance reduction). In this paper we did not use yields as a cluster variable but as a measure of success. MAF also was the best one for separating low- from high-yielding areas over the MZs. The results show that the proposed approach could be effectively used for management zone delineation. Conclusions: This methodology facilitates evaluating innovative approaches in challenging spatial modeling scenarios, such as low-sampled fields with outliers. A wide range of summarization methods and clustering techniques are available, making this agnostic approach quite interesting for delivering MZ maps. This flexible approach can guide precision nutrient management in low-sampled areas, allowing the joint use of data science tools and agronomical knowledge to delineate variable rate application strategies.en
dc.description.affiliationFaculdade de Engenharia Agrícola (FEAGRI) Universidade de Campinas (UNICAMP)
dc.description.affiliationEmbrapa Agricultura Digital
dc.description.affiliationFaculdade de Ciências Tecnologia e Educação Universidade Estadual Paulista (UNESP)
dc.description.affiliationEmbrapa Territorial
dc.description.affiliationUnespFaculdade de Ciências Tecnologia e Educação Universidade Estadual Paulista (UNESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConsórcio Pesquisa Café
dc.description.sponsorshipIdCAPES: Finance Code 001
dc.description.sponsorshipIdConsórcio Pesquisa Café: Seg number 10 18 20 01200000
dc.identifierhttp://dx.doi.org/10.1007/s11119-024-10218-w
dc.identifier.citationPrecision Agriculture, v. 26, n. 1, 2025.
dc.identifier.doi10.1007/s11119-024-10218-w
dc.identifier.issn1573-1618
dc.identifier.issn1385-2256
dc.identifier.scopus2-s2.0-85214265028
dc.identifier.urihttps://hdl.handle.net/11449/307980
dc.language.isoeng
dc.relation.ispartofPrecision Agriculture
dc.sourceScopus
dc.subjectClustering
dc.subjectCoffea arabica L
dc.subjectCokriging
dc.subjectData fusion
dc.subjectMultivariate kriging
dc.subjectSpecialty coffee
dc.titleDelineation of management zones dealing with low sampling and outliersen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-5152-6497[1]
unesp.author.orcid0000-0002-5603-2736[2]
unesp.author.orcid0000-0002-0754-2641[3]
unesp.author.orcid0000-0003-4879-7015[4]
unesp.author.orcid0000-0001-8132-8398[5]
unesp.author.orcid0000-0002-7036-1595[6]

Arquivos

Coleções