Logotipo do repositório
 

Publicação:
Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Biomed Central Ltd

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Background: The current state-of-the-art for field wood identification to combat illegal logging relies on experienced practitioners using hand lenses, specialized identification keys, atlases of woods, and field manuals. Accumulation of this expertise is time-consuming and access to training is relatively rare compared to the international demand for field wood identification. A reliable, consistent and cost effective field screening method is necessary for effective global scale enforcement of international treaties such as the Convention on the International Trade in Endagered Species (CITES) or national laws (e.g. the US Lacey Act) governing timber trade and imports. Results: We present highly effective computer vision classification models, based on deep convolutional neural networks, trained via transfer learning, to identify the woods of 10 neotropical species in the family Meliaceae, including CITES-listed Swietenia macrophylla, Swietenia mahagoni, Cedrela fissilis, and Cedrela odorata. We build and evaluate models to classify the 10 woods at the species and genus levels, with image-level model accuracy ranging from 87.4 to 97.5%, with the strongest performance by the genus-level model. Misclassified images are attributed to classes consistent with traditional wood anatomical results, and our species-level accuracy greatly exceeds the resolution of traditional wood identification. Conclusion: The end-to-end trained image classifiers that we present discriminate the woods based on digital images of the transverse surface of solid wood blocks, which are surfaces and images that can be prepared and captured in the field. Hence this work represents a strong proof-of-concept for using computer vision and convolutional neural networks to develop practical models for field screening timber and wood products to combat illegal logging.

Descrição

Palavras-chave

Wood identification, Illegal logging, CITES, Forensic wood anatomy, Deep learning, Transfer learning, Convolutional neural networks

Idioma

Inglês

Como citar

Plant Methods. London: Biomed Central Ltd, v. 14, 10 p., 2018.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação