Logotipo do repositório
 

Publicação:
Unsupervised similarity learning through Cartesian product of ranking references

dc.contributor.authorValem, Lucas Pascotti
dc.contributor.authorPedronette, Daniel Carlos Guimarães
dc.contributor.authorAlmeida, Jurandy
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-12-11T17:23:40Z
dc.date.available2018-12-11T17:23:40Z
dc.date.issued2017-01-01
dc.description.abstractDespite the consistent advances in visual features and other Multimedia Information Retrieval (MIR) techniques, measuring the similarity among multimedia objects is still a challenging task for an effective retrieval. In this scenario, similarity learning approaches capable of improving the effectiveness of retrieval in an unsupervised way are indispensable. A novel method, called Cartesian Product of Ranking References (CPRR), is proposed with this objective in this paper. The proposed method uses Cartesian product operations based on rank information for exploiting the underlying structure of datasets. Only subsets of ranked lists are required, demanding low computational efforts. An extensive experimental evaluation was conducted considering various aspects, seven public multimedia datasets (images and videos) and several different features. Besides effectiveness, experiments were also conducted to assess the efficiency of the method, considering parallel and heterogeneous computing on CPU and GPU devices. The proposed method achieved significant effectiveness gains, including competitive state-of-the-art results on popular benchmarks.en
dc.description.affiliationDepartment of Statistics, Applied Mathematics and Computing, State University of São Paulo (UNESP), Av. 24-A, 1515, Rio Claro, SP 13506-900, Brazil
dc.description.affiliationInstitute of Science and Technology, Federal University of São Paulo (UNIFESP), Av. Cesare M. G. Lattes, 1201, São José dos Campos, SP 12247-014, Brazil
dc.identifierhttp://dx.doi.org/10.1016/j.patrec.2017.10.013
dc.identifier.citationPattern Recognition Letters.
dc.identifier.doi10.1016/j.patrec.2017.10.013
dc.identifier.file2-s2.0-85032386729.pdf
dc.identifier.issn0167-8655
dc.identifier.scopus2-s2.0-85032386729
dc.identifier.urihttp://hdl.handle.net/11449/177056
dc.language.isoeng
dc.relation.ispartofPattern Recognition Letters
dc.relation.ispartofsjr0,662
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCartesian product
dc.subjectContent-based image retrieval
dc.subjectEffectiveness
dc.subjectEfficiency
dc.subjectUnsupervised learning
dc.titleUnsupervised similarity learning through Cartesian product of ranking referencesen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85032386729.pdf
Tamanho:
1.81 MB
Formato:
Adobe Portable Document Format
Descrição: