Logo do repositório
 

Classification of LiDAR data over building roofs using k-means and principal component analysis

dc.contributor.authordos Santos, Renato César [UNESP]
dc.contributor.authorGalo, Mauricio [UNESP]
dc.contributor.authorTachibana, Vilma Mayumi [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:19:20Z
dc.date.available2018-12-11T17:19:20Z
dc.date.issued2018-01-01
dc.description.abstractThe classification is an important step in the extraction of geometric primitives from LiDAR data. Normally, it is applied for the identification of points sampled on geometric primitives of interest. In the literature there are several studies that have explored the use of eigenvalues to classify LiDAR points into different classes or structures, such as corner, edge, and plane. However, in some works the classes are defined considering an ideal geometry, which can be affected by the inadequate sampling and/or by the presence of noise when using real data. To overcome this limitation, in this paper is proposed the use of metrics based on eigenvalues and the k-means method to carry out the classification. So, the concept of principal component analysis is used to obtain the eigenvalues and the derived metrics, while the k-means is applied to cluster the roof points in two classes: edge and non-edge. To evaluate the proposed method four test areas with different levels of complexity were selected. From the qualitative and quantitative analyses, it could be concluded that the proposed classification procedure gave satisfactory results, resulting in completeness and correctness above 92% for the non-edge class, and between 61% to 98% for the edge class.en
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho - UNESP
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho – UNESP Departamento de Cartografia
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho – UNESP Departamento de Estatística
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho - UNESP
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho – UNESP Departamento de Cartografia
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho – UNESP Departamento de Estatística
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2016/12167-5
dc.description.sponsorshipIdCNPq: 304189/2016-2
dc.format.extent69-84
dc.identifierhttp://dx.doi.org/10.1590/S1982-21702018000100006
dc.identifier.citationBoletim de Ciencias Geodesicas, v. 24, n. 1, p. 69-84, 2018.
dc.identifier.doi10.1590/S1982-21702018000100006
dc.identifier.fileS1982-21702018000100069.pdf
dc.identifier.issn1982-2170
dc.identifier.issn1413-4853
dc.identifier.scieloS1982-21702018000100069
dc.identifier.scopus2-s2.0-85045150395
dc.identifier.urihttp://hdl.handle.net/11449/176161
dc.language.isoeng
dc.relation.ispartofBoletim de Ciencias Geodesicas
dc.relation.ispartofsjr0,188
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectClassification of LiDAR points
dc.subjectEdge points
dc.subjectEigenvalues
dc.subjectK-means method
dc.subjectPrincipal component analysis
dc.titleClassification of LiDAR data over building roofs using k-means and principal component analysisen
dc.titleClassificação de dados LiDAR sobre telhados de edificações usando k-médias e análise de componentes principaispt
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-0263-312X[1]
unesp.author.orcid0000-0002-0104-9960 0000-0002-0104-9960[2]
unesp.author.orcid0000-0002-8804-6163 0000-0002-8804-6163[3]
unesp.departmentCartografia - FCTpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S1982-21702018000100069.pdf
Tamanho:
1.12 MB
Formato:
Adobe Portable Document Format