Logotipo do repositório
 

Publicação:
Geophysical modeling in gold deposit through DC Resistivity and Induced Polarization methods

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Fundação Gorceix

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Abstract Ore mining fundamentally depends on the definition of its tenor and volume, something extremely complex in disseminated mineralization, as in the case of certain types of deposits of gold and sulfites. This article proposes the use of electrical tomography for definition of a geophysical signature in terms of electrical resistivity and chargeability, in an outcrop of mineralized quartz lode at the end of an inactive gold mine. One of the targets was to analyze the continuity of the mineralized body, the occurrence of new outcrops and the applicability of the method as an auxiliary tool in mineral extraction. Three parallel lines of electrical tomography in a dipole-dipole arrangement, being orthogonal to the orientation of the gold lode, were installed in an area outside the mine. The results allowed the geophysical characterization of the mineralized zone by high resistivity (above 1000Ω.m) and high chargeability (above 30mV/V). The results of the 2D inversion models were interpolated in 3D visualization models, which allowed definition of the contour surfaces for the physical parameters measured, and the morphological pattern modeling of the mineralization. The data reveal the existence of a new lode in subsurface, localized 30m to the south of the lode outcrop. The versatility of the acquisition and data processing indicate the application potential of electrical tomography as a criterion for sampling and tenor definition in ore extraction activities, since it is objective and low cost.

Descrição

Palavras-chave

ore extraction, sulfides, electrical resistivity tomography, 3D modeling

Idioma

Inglês

Como citar

REM - International Engineering Journal. Fundação Gorceix, v. 69, n. 3, p. 293-299, 2016.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação